

CAHIER DE RECHERCHE DE

LA CHAIRE FINTECH

AMF – FINANCE MONTRÉAL

Towards Scalable Systems for

Securities on Blockchains

Par Kaiwen Zhang

École de technologie supérieur, ÉTS.

Décembre 2021

Projet réalisé dans le cadre du 2ème appel de projets

de la Chaire « Les Fintechs du Québec : du

développement de l’écosystème à l’expérience, de

la réglementation aux enjeux de sécurité »

L’ÉTS est une constituante du réseau de l’Université du Québec

École de technologie supérieure (ÉTS)
1100, rue Notre-Dame Ouest

Montréal, (QC), Canada, H3C 1K3
Tél. : (1) 514 396 8735

Département de génie logiciel et TI

Rapport final
Towards Scalable Systems for Securities on Blockchains

Prof. Kaiwen Zhang, Ph.D.

L’ÉTS est une constituante du réseau de l’Université du Québec

1. État final du projet

Dans l’ensemble, le projet s’est bien déroulé. Grâce aux fonds du projet, nous avons pu financer

un étudiant au doctorat à l’ÉTS pour 12 mois. Il s’agit de Yahya Shahsavari.

Nous avions le mandat suivant :

Subproject 2 (Prof. Kaiwen Zhang) -

The design of performance models for blockchain networks, with Quorum as a starting point.

Our performance model will allow us to optimally tune the system with respect to key

parameters such as the number of nodes, block size, and block time. We will then demonstrate

the applicability of our approach by evaluating the performance (throughput, confirmation time,

transaction fees) of the smart contract prototype generated in (1).

Essentiellement, notre objectif était de modéliser la performance du système Quorum de JP

Morgan/Consensys. Nous avons légèrement modifié cet objectif en incorporant aussi le système

Diem de Meta. Les avancements du projet sont :

1. Nous avons modélisé le système Diem de Meta. Nous avons réalisé un modèle

complet validé par nos simulations. Nous avons rédigé un article que nous allons

soumettre à la conférence IEEE ICDCS 2022. L’article est attaché en annexe.

2. Nous avons adapté le modèle proposé pour modéliser IBFT de Quorum. Nous avons

déjà écrit le chapitre qui couvre se modèle (voir l’annexe). Nous allons utiliser ce

chapitre pour écrire une version étendue de l’article précédent qui va être soumise à

une revue académique.

Les étapes qui restent à compléter sont :

1. Ajouter des résultats de simulation de Quorum pour valider le modèle développé.

2. Utiliser nos modèles pour analyser les applications étudiées dans le sous-projet #1,

mené par le professeur Jeremy Clark de Concordia. Nous avons identifiés les « roll-ups »

comme étant un bon cas d’utiisation. Les « roll-ups » sont des agrégations de

transaction financières qui sont effectués hors-chaîne, ce qui permet d’alléger la charge

du système. Nous allons utiliser notre modèle de performance pour étudier le potentiel

d’amélioration de performance des « roll-ups » dans les systèmes Diem et Quorum.

Nous soumettre un autre article de conférence avec le titre « Performance Modeling of

Roll-Up Mecanisms in Blockchain Systems ».

3. Nous allons présenter nos travaux à la conférence de la chaire AMF, ainsi que déposer

un rapport final dans le cahier de recherche de la chaire, avec un article pour le site web

de la chaire.

Il se peut que ces travaux dépassent la fin du projet. Nous allons utiliser d’autres fonds

de recherche pour financer les études de Yahya afin d’assurer qu’il complète ses études.

Performance Modeling and Analysis of
PBFT Consensus for the Diem Blockchain Network

Authors names blinded for review

Abstract—Facebook has recently introduced a new cryptocur-
rency called Diem, previously known as Libra. Contrary to
popular cryptocurrencies such as Bitcoin and Ethereum, Diem
operates on a permissioned network maintained by independent
members of the Diem Association. Thus, Diem does not employ
Proof-of-Work (PoW) and uses its own Practical Byzantine Fault-
Tolerant (PBFT) consensus mechanism which is a variant of
HotStuff, a well-known modern consensus algorithm. Previous
studies on PBFT algorithms typically focus on the threshold
for correctness (e.g., total number of peers of 3f + 1) or the
communication complexity (e.g., O(n) view changes). However,
these works do not address the impact of network parameters
on the performance of the system.

In this paper, we seek to address this research gap by analyzing
the performance of PBFT consensus, as implemented in the Diem
blockchain, from a networking perspective. We present a theoret-
ical model which accurately predicts blockchain-related metrics
such as the transaction throughput and expected confirmation
time using important networking parameters such as the number
of validators, link latency, and packet loss. Furthermore, we
validate our model through extensive simulations carried out
using OMNeT++. Our results show that the QoS level of the
network has a major impact on the probability of successfully
achieving consensus in Diem. Furthermore, the number of faulty
nodes will affect the throughput of the network, even when the
number of honest nodes is greater than the established threshold
bound of 3f + 1.

Index Terms—Diem, performance modeling, blockchain,
throughput, HotStuff, PBFT, Libra

I. INTRODUCTION

After the successful launch of Bitcoin, many cryptocur-
rencies have been deployed so far with varying capabilities.
While most cryptocurrencies employ a permissionless public
network, Facebook has introduced a new cryptocurrency called
Diem (previously known as Libra [1]) which operates on a
permissioned network. The Diem network consists of a set
of geographically distributed replicas referred to as validators
that form the Diem association and collaborate together to
process transactions and reach a consensus on the state of the
distributed ledger.

A major feature of the Diem network is that it allows for the
use of non-Proof-of-Work-based (PoW) consensus algorithms.
Hence, Diem utilizes DiemBFT [2], which is a variant of
HotStuff protocol [3]. This choice of consensus algorithm
allows Diem to outperform PoW-based systems by offering
superior transaction throughput and minimizes the energy
consumption, at the expense of full decentralization.

DiemBFT belongs to a class of consensus algorithms
called Practical Byzantine Fault-Tolerance (PBFT) which has
been well-studied in the literature for several decades [4]–
[8]. Previous studies on PBFT algorithms typically focus on

the threshold for correctness (e.g., total number of peers of
3f + 1) or the communication complexity (e.g., O(n) view
changes) [9]–[14]. However, these works do not address the
impact of network parameters such as network size or the
number of faulty nodes on the performance of the system.
Furthermore, PBFT studies predate blockchain technologies;
thus, very few studies exist on the performance of PBFT
consensus in the context of blockchain networks. For instance,
to the best of our knowledge, there are no existing works
that explain how additional honest peers beyond the minimum
safety threshold of 3f+1 total peers contribute to blockchain-
related performance metrics such as transactional throughput
and confirmation time.

In this paper, we seek to address the aforementioned re-
search gap by modeling the performance of the Diem PBFT
consensus algorithm. As it is the principal component of a
blockchain system, it is imperative to analyze its performance
in order to gain insights into the behavior and dynamics of
the system, thereby facilitating the optimal configuration of
the network without requiring iterative benchmarking. Contri-
butions of our paper are as follows:

1) We present a theoretical model for the DiemBFT consen-
sus mechanism and derive explicit mathematical equa-
tions to describe the behaviour of the system and identify
the relationship between different metrics affecting the
performance of Diem blockchain.

2) We validate our theoretical model through extensive
simulations using the network simulator OMNeT++,
which is a discrete event simulator.

3) We estimate the throughput or the number of transac-
tions per second (TPS) in Diem. As well, we identify the
most effective parameters which impact the performance
of Diem (e.g., network size, number of faulty nodes, and
transaction processing time).

The rest of this article is organized as follows: in Section II,
we review previous works related to PBFT consensus and
permissioned blockchain networks. In Section III, we present
an overview of the Diem blockchain system as background
material necessary to understand our paper. In Section IV,
we present our proposed analytical approach for modeling
the performance of Diem. In Section V, we validate our
developed model through extensive simulations and study
the performance of the Diem blockchain. Finally, Section VI
concludes our paper.

Fig. 1: Architecture of the Diem network: validators are peers belonging to members of the Diem association (e.g., central
banks and multinational corporations). Each validator maintains a full copy of the blockchain distributed ledger.

II. RELATED WORKS

In this section, we survey existing works on performance
modeling and analysis of Diem and related blockchains. To the
best of our knowledge, there are few works on the performance
of Diem as it is a relatively recent system. Nevertheless,
the Practical Byzantine Fault Tolerance (PBFT) family of
consensus algorithms which includes HotStuff, which is the
original design of DiemBFT, has been well studied in the
literature and is relevant to our work. However, no prior work
proposes a theoretical performance model for the analysis of
the Diem blockchain network.

In [15], a theoretical performance model for PBFT is
presented. In this work, analytical formulas for estimating
the performance of PBFT are extracted and validated through
extensive simulations and impact of unreliable channels and
the use of different transport protocols (i.e TCP and UDP)
over them are discussed. However, it does not propose explicit
formulas for configuration parameters such as network size or
number of faulty nodes.

In [16], a comparison of PoW and PBFT is presented.
According to the reported results, PBFT offers a better latency
while PoW is more scalable with respect to the size of the
network.

An experimental study of Diem is presented in [17]. The
performance and scalability of Diem are evaluated and com-
pared with Hyperledger Fabric, which is another popular
permissioned blockchain system. The evaluation metrics are
throughput (transactions per second, TPS) and execution time
(i.e., the time taken to commit a block of transactions in the
ledger). Parameters include the number of peers and the system
workload (i.e. total number of transactions). According to the
authors, the throughput of the system decreases and execution
time increases when the number of peers increases for both

platforms. As well, with respect to increasing the number
of transactions, the throughput of both systems increases
at first then decreases. A reverse trend is reported for the
execution time. Unlike our work, this paper is based only on
experimental results and does not study the performance and
scalability of the system in the presence of faulty nodes.

A brief comparison of Bitcoin, Ethereum and Libra is
presented in [18]. However, it reports the results of [17]
directly and does not provide any independent performance
analysis.

In [19], a classification of consensus mechanisms in
blockchain-based systems is presented. In this paper, HotStuff
is studied as the basis of DiemBFT. According to this work, the
advantage of Diem is its low confirmation latency. However,
Diem suffers from low network size scalability, high commu-
nication cost, and weak network synchronization.

In [20], a survey of empirical performance evaluation of
permissioned blockchains is presented. However, this work
does not introduce a systematic approach for the analysis
of blockchain systems based on the selected metrics (e.g.,
network size scalability and the number of transactions).

[21] presents a mathematically formalized study of forensic
support for PBFT-based consensus protocols in the presence
of the maximum number of faulty replicas. This work claims
that minor variations in the PBFT protocols can profoundly
affect forensic support. Another result reported in this paper
is that DiemBFT exhibits a strong forensic support capability.

In [22], an evaluation framework for evaluating the perfor-
mance of pipelined Hotstuff is presented. Evaluation metrics
are the rate of chain growth, quality of the chain, and latency.
This framework is leveraged for evaluating some optimization
schemes for Diem. According to the results reported in this
paper, these optimizations make the Diem system vulnerable

to some kinds of attacks. However, this work does not present
an analytical model for estimating the performance of Diem
based on the network configuration parameters.

In this paper, we present an analytical model which de-
scribes the relationship between configuration and set up
parameters and selected performance measures. There is a
similar work for PoW-based systems such as Bitcoin [23] and
proposes explicit formulas for performance measures such as
block propagation speed. But in this paper we focused on BFT
based consensus protocols and in particular, DiemBFT.

III. BACKGROUND ON DIEM

In this section, we briefly introduce Diem and present the
required background that is necessary to understand this paper.
We study the Diem protocol and related concepts in order to
develop a theoretical model for the performance analysis of
the system.

Diem is a permissioned blockchain-based system that seeks
to maintain a decentralized and programmable database of re-
sources revolving around the Diem cryptocurrency. According
to Diem blockchain white paper [1], these resources are owned
by a variety of user accounts that are already authenticated
by public key cryptographic schemes according to the set of
rules defined by the original developers of the Diem. Core
functionalities of the Diem are defined using its programming
language: Move. Move is also being used for developing smart
contracts, as well as defining the user memberships in the
Diem ecosystem.

A. Architecture overview

Diem is a permissioned blockchain-based system that con-
sists of a number of geographically distributed governor nodes
referred to as validators. These validators are members of the
Diem association [1]. This consortium consists of a set of
founding members (e.g., well-reputed central banks and large
companies) which back the Diem coin with treasuries and
cash deposits. In fact, certain participation criteria such as a
minimum amount of committed stake is required to join the
network in bootstrapping Diem.

An overview of the Diem architecture is depicted in Fig-
ure 1. The Diem system consists of two entities: validators
and clients. Validators are responsible for maintaining the
distributed ledger of programmable resources (e.g., Diem
coin). Hence, each validator keeps a full copy of the ledger,
while this is optional for clients.

Validators form a fully connected network via peer-to-peer
(P2P) links. Clients submit their transactions to the validators
to be included in the ledger. These pending transactions
are stored by the validators in a shared mempool, which is
synchronized regularly. Validators use the DiemBFT protocol
to decide which transactions to commit to the ledger (see
the next Subsection III-B). Similar to classical PBFT, the
consensus algorithm iterates through rounds. In each round, a
leader is selected using a verifiable random function [24]. The
leader proposes a sequence of transactions as a new block.
Then, the leaders broadcast the proposed block to the rest

of the validators. All of the validators should execute the
transactions in the received block. Finally, they will send their
vote to the next leader.

B. Diem consensus protocol

The DiemBFT consensus protocol is an implementation
of the HotStuff consensus algorithm [3], with one major
optimization that reduces the round synchronization overhead
to one message per node during each round. The safety and
liveness of the system are guaranteed assuming a partial
synchrony model [5] which tolerates Byzantine failures [4].
In order to remain live, all the messages from the honest
validators should be delivered to the other honest validators
within a maximal network delay δ [1].

DiemBFT protocol assumes that the network consists of
3f + 1 validator nodes where f is the maximum number
of tolerable Byzantine or faulty nodes. In other words, in a
network of N validator nodes where N = 3f + 1, faulty
nodes can control at most f votes, and the rest of the votes
are controlled by the honest nodes.

Clients submit a proposed transaction to the validators in
order to change the ledger state. Then, they start a timer and
wait for the transaction to be committed to the ledger. If the
timer of a client expires, it aborts the submitted transaction
and starts another submission. Validators collect the submitted
transactions in their shared mempool.

Processing the submitted transactions takes place within a
sequence of rounds. At the beginning of each round, one of
the validators gets selected as the leader of the round by
the proposer of the latest block using a verifiable random
mechanism that cannot be predicted in advance. This verifiable
random function reduces the chance of an attacker launching
a successful denial of service (DoS) attack against the leader.

The leader of the round packs a batch of transactions into
a proposed block denoted by Bk and broadcasts it to the
rest of the validators. Upon receiving the proposed bock,
validators check their voting rules and decide whether to vote
for certifying this block or not. When a validators decision is to
certify the block, it speculatively executes all the transactions
embedded in the block without committing it to the ledger.
Then, it sends a signed vote for block Bk to the leader of the
next round. The leader of the next round collects the votes
of the validators. If the number of collected votes is equal to
or greater than 2f + 1, it issues a quorum certificate (QC)
for the block Bk. Simultaneously, the leader of the current
round proposes its own block (denoted by Bk+1) which is
containing the transactions that are not already packed in a
block or proposal and embeds the issued QC for Bk in it.
Similarly, the leader broadcasts the new proposal to the rest
of the validators. In the same way, validators will send their
votes for this proposal to the leader of the next round. The
leader of the next round collects the votes and checks the
number of votes for Bk and Bk+1 while it proposes its own
block denoted by Bk+2. If the number of votes for QC of Bk

is equal to or greater than 2f +1, the leader issues a quorum
certificate of quorum certificate (QC-of-QC) for Bk. As well,

if the number of collected votes for Bk+1 is equal to or greater
than 2f+1, the leader issues a QC for Bk+1 and embed them
to its own proposal denoted by Bk+2 broadcasts it to rest of
the validators. In the same way, the leader of the next round
can issue a QC-of-QC-of-QC, a QC-of-QC, and a QC for Bk,
Bk+1, and Bk+2 respectively. When a proposed block gets
three consecutive QCs, it is then committed to the ledger.

C. Networking

According to [1], the Diem network is a general-purpose
network inspired by libp2p [25]. Moreover, the inter-validator
network utilizes a P2P architecture based on Multiaddr [26]
for addressing the validators. TCP is employed as a reliable
transport protocol. The end-to-end traffic is fully encrypted
using Yamux [27]. In the Diem network, any validator should
directly connect to other validators. If any validator can not be
connected directly, it will be treated like a faulty or Byzantine
peer.

IV. PROPOSED ANALYTICAL MODEL

In this section, we explain our proposed theoretical model
which we use to derive explicit equations for calculating two
key blockchain metrics: transaction throughput and block pro-
cessing time (i.e, the amount of time required from proposing a
block until it gets a QC-of-QC-of-QC from one of the leaders).

A. Assumptions

Assume a network of N validators with the same processing
power that should be fully connected pairwise over a P2P
network (i.e., each validator is directly connected to N − 1
validators). Any missing connection should be considered
a Byzantine failure. We assume transmission delay has an
exponential distribution in P2P links with a mean of 1/µ.
Although in reality, the latency of the links does not necessar-
ily follow an exponential distribution, nevertheless developing
a theoretical model without simplification assumptions will
not be a trivial job since the relationship between parameters
will become intractable. The exponential distribution is fully
described in [28] and has frequently been used for modeling
asynchronous networks in literature (e.g. [29], [30]). As well,
we assume all of the messages reach to destination with
a constant probability of p (or get lost or dropped with a
constant probability of 1 − p). Note that validators also set
a timer in each round, and can give up a certain round if they
do not receive the related messages within a predetermined
interval of time. Hence, although the Diem system utilizes
TCP, and thus all of the packets will eventually be delivered
to the destination, the packets should also arrive at their
destination within a maximum delay of δ. Otherwise, they will
be considered as lost messages. If a validator’s timer expires,
it will send a time-out message instead of a positive/negative
vote or QC and will give up the round. If a leader gathers time-
out messages from a quorum of validators, it will broadcast
a time-out certificate (TC) instead of QC and the round will
be aborted. In this paper, we treat a timed-out validator as a
faulty node.

We assume all of the validators are acting independently,
as intended by the Diem association. As well, assume f out
of N validators are faulty. Suppose a set of clients have
submitted their transaction proposal to the shared mempool
of the validators. Let us denote the leader of the K’th round
with LK . Assume LK (i.e. V1 in Figure 2) proposes a block
containing a bunch of transactions as mentioned above for
the first time as depicted in Figure 2. In order to be eligible
to be appended to the blockchain, the proposed block must
meet three contiguous QCs in three consecutive rounds of K,
K + 1, and K + 2. Let us define random variables XK and
YK in round K as follows:

XK= Number of nodes that receive the proposed block
from the leader in round K

YK= Number of positive votes that leader of round K + 1
receives from validators

B. Consensus time

In order to be committed to the distributed ledger as a
valid block, the leader of round K + 3 must accumulate at
least QC positive votes from the validators for that block.
The probability mass function of receiving i positive votes
by LK+3 can be calculated as:

P{YK+2 = i} =
N∑

i′=i

P{YK+2 = i|XK+2 = i′}P{XK+2 = i′}

(1)
where P{XK+2 = i′} is the probability that i′ validators

receive QC-of-QC in round K + 2 from LK+2 and can be
calculated as follows:

P{XK+2 = i′} =

N − f − 1

N − 1

N∑
j=i′

P{XK+2 = i′|YK+1 = j}P{YK+1 = j} (2)

Note that in order to reach a consensus, all three leaders
LK , LK+1, and LK+2 must be selected from the non-faulty
nodes (also known as honest nodes). As already mentioned,
the leader of each round is determined by the proposer of the
latest committed block. In the future, we will see that one
block will eventually be committed to the ledger at the end of
each round. We assume a validator never determines itself as
the leader of the next round. Thus, the factor N−f−1

N−1 in the
equation (2) is the probability of selecting a honest node as
LK+2 while LK+1 was already selected from honest nodes
(LK+2 6= LK+1).

Similarly, in round K + 1 we can write:

Fig. 2: Overview of the DiemBFT protocol: a proposed block gets committed to the ledger it three consecutive rounds

P{YK+1 = j} =
N∑

j′=j

P{YK+1 = j|XK+1 = j′}P{XK+1 = j′} (3)

as well,

P{XK+1 = j′} =

N − f − 1

N − 1

N∑
k=j′

P{XK+1 = j′|YK = k}P{YK = k} (4)

in the same way,

P{YK = k} =
N∑

k′=k

P{YK = k|XK = k′}P{XK = k′} (5)

P{XK = k′} = N − f − 1

N − 1

(
N

k′

)
pk

′
(1− p)N−k

′
(6)

In Equation (1), P{YK+2 = i|XK+2 = i′} can be re-written
as follows:

P{YK+2 = i|XK+2 = i′} =
(
i′

i

)
pi(1− p)i

′−i (7)

In the same way in Equation (3):

P{YK+1 = j|XK+1 = j′} =
(
j′

j

)
pj(1− p)j

′−j (8)

and in Equation (5):

P{YK = k|XK = k′} =
(
k′

k

)
pk(1− p)k

′−k (9)

So far, we are able to calculate the probability of reaching
a consensus successfully (denoted as ps) when i = QC.
Nevertheless, consensus happens when LK+3 receives QC or
more positive votes from the validators. Therefore,

Ps =

N∑
i=QC

P{YK+2 = i} (10)

For estimating the transaction throughput, we need to cal-
culate the mean time of reaching a consensus as follows:

E[Tc] = E[Ts] + (1− ps)τo (11)

where E[Tc] and E[Ts] are the expected values of time for
reaching a consensus (consist of all successful and unsuc-
cessful attempts) and the expected value of the time for a
successful attempt to reach a consensus, respectively. As well,
τo is the value of the timer set by the clients as a time-out
value. We assume all of the clients always set the same amount
for the timer. ps can be calculated using Algorithm 1.

To estimate E[Ts], we need to use a delay model for mod-
eling the P2P delay between validators in the network. Since
we assume that validators are connected together through
asynchronous links, we use an exponential distribution as the
delay model.

Assume nK , nK+1, and nK+2 are the number of validators
that receive the block proposal from the leader of the round
during rounds K, K + 1, and K + 2 respectively (see the
Figure 2). The process of sending the proposal from the

leader to validators in each round can be considered as an
asynchronous process since leaders broadcast the proposal to
validators at almost the same time. Clearly,

nk =
N − f − 1

N − 1
p(N − 1) (12)

the next leader needs to receive at least QC valid and pos-
itive votes. Otherwise, the consensus attempt fails. Therefore,

nk+1 =
N − f − 1

N − 1
p(N−1)

N∑
i=QC

(
nK
i

)
pi(1−p)nk−i (13)

Accordingly,

nk+2 =

N − f − 1

N − 1
p(N − 1)

N∑
i=QC

(
nK+1

i

)
pi(1− p)nk+1−i (14)

Assume M nodes are sending messages to the same des-
tination with a exponentially distributed delay. The expected
time to receive i messages at the destination can be calculated
as follows [28]:

E[TM] =
1

µ

i−1∑
j=0

1

M − j
(15)

where µ is the parameter of the exponential distribution (e.g.
µ−1= mean P2P delay between the nodes).

Hence,

E[Tnk
] =

1

µ

QC−1∑
i=0

1

nk − i
(16)

where E[Tnk
] is the expected time takes for Lk+1 to receive

QC valid and positive votes from the nk validators at the end
of round K. In the same way we can write:

E[Tnk+1
] =

1

µ

QC−1∑
i=0

1

nk+1 − i
(17)

and,

E[Tnk+2
] =

1

µ

QC−1∑
i=0

1

nk+2 − i
(18)

we are now able to calculate E[Ts] as follows:

E[Ts] =
3

µ
+ E[Tp] +

QC−1∑
i=0

1

nk − i
+

1

nk+1 − i
+

1

nk+2 − i
(19)

where E[Tp] is the mean processing time. Now we can
calculate E[Tc] from Equation (11).

C. Transaction throughput

Any leader that receives a QC or QC-of-QC from the
previous leader can piggyback its own proposal [2]. Therefore,
the throughput of the system γ can be calculated as follows:

γ =
3

E[Tc]
(20)

V. MODEL VALIDATION AND ANALYSIS

In this section, we validate our theoretical model by com-
paring it with simulation results and explain the configuration
we set up for simulation. We then discuss the results and the
impact on the expected performance of the Diem network, as
well as potential trade-offs.

Implementation: We used OMNeT ++ [31] as a discrete
event-based simulator of the network. As well, we used
Matlab for the calculation and analysis of the theoretical
model. We used NED language for describing the network
topology and assigning values to networking parameters (e.g.
p2p latency, network size, and etc). We implemented Diem-
BFT mechanism in each module using C + +. As well, we
changed random number seeds using an ini file.

Settings: According to [1], the current goal of Diem is to
support around 100 validators but is expected to grow to a final
size of 500-1000 validators over time. In this paper, we carry
out the experiments for a variety of network sizes but limit our
experiments to around 100 validators. In each experiment, we
considered a network with a size of N as N = 3f∗+1 where
f∗ is the maximum tolerable number of faulty validators. In
other words, we carried out the experiments for N = 9k + 4
where k = {Z ∈ [0, 11]} and f∗ = 3k + 1.

For all experiments, we assumed each block consists of
1000 transactions and processing of each transaction in val-
idators takes the same amount of 1ms. Moreover, we assumed
that for a certain block in each round the leader has the
same processing power and consequently the same processing
delay as validators. In OMNeT++, a processing delay can
be simulated using a self message scheduled for a certain
event. We assumed validators spend the same time validating
block proposal, QC, and Qc-of-QC. These parameters can be
adjusted in the simulation code for further analysis in future
work.

We set a direct P2P link between any two arbitrary valida-
tors. Hence, the network is a complete graph. We set the P2P
link delay with an exponential distribution with a mean amount
of 1/µ = 1ms. Assuming an exponential distribution for link
delay is common and adequate for many use cases [32]. In
OMNeT++, one can create a channel between two arbitrary
modules in the Ned file with an exponential distribution and
assign the mean value.

In order to simulate parameter p, we implemented all the
links as ideal links without any packet loss, drop, or corruption.
Instead, in the receiver module, packets get deleted upon
arrival with a probability of 1 − p or go to the next level
with a probability of p.

Algorithm 1: Calculating the probability of reaching
consensus in Diem

Input : The values of N , f , QC p, µ, Ntx, Dtx and
τo

Output: Probability of reaching a consensus
1 PYK

=[0]1×(N−QC+1), PYk+1
=[0]1×(N−QC+1),

2 PYk+2
=[0]1×(N−QC+1)

3 PXK
=[0]1×(N−QC+1), PXK+1

=[0]1×(N−QC+1),
PXK+2

=[0]1×(N−QC+1)

4 for i = 1 to N −QC + 1 do
5 PXK

[i]← N−f−1
N−1

(
N
i

)
pi(1− p)N−i // This loop

calculates Equation (6)
6 end
7 for i = 1 to N −QC + 1 do
8 // This loop calculates Equation (5)
9 A ←i+QC-1

10 for j = i to N −QC + 1 do
11 B ←j+QC-1
12 PYK

[i]←
∑N−QC+1

j=i

(
B
A

)
pA(1−p)B−APXK

[j]

13 end
14 end
15 for i = 1 to N −QC + 1 do
16 // This loop calculates Equation (4)
17 C ←i+QC-1
18 for j = i to N −QC + 1 do
19 D ←j+QC-1
20 PXK+1

[i]←
N−f−1
N−1

∑N−QC+1
J=i

(
D
C

)
pC(1− p)D−CPYK

[j]

21 end
22 end
23 for i = 1 to N −QC + 1 do
24 // This loop calculates Equation (3)
25 E ←i+QC-1
26 for j = i to N −QC + 1 do
27 F ←j+QC-1
28 PYK+1

[i]←∑N−QC+1
j=i

(
F
E

)
pE(1− p)F−EPXK+1

[j]

29 end
30 end
31 for i = 1 to N −QC + 1 do
32 // This loop calculates Equation (2)
33 G ←i+QC-1
34 for j = i to N −QC + 1 do
35 H ←j+QC-1
36 PXK+2

[i]← N−f−1
N−1

∑N−QC+1
J=i

(
H
G

)
pG(1−

p)H−GPYK+1
[j]

37 end
38 end
39 for i = 1 to N −QC + 1 do
40 M ←i+QC-1
41 for j = i to N −QC + 1 do
42 N ←j+QC-1
43 PYK+2

[i]←∑N−QC+1
j=i

(
N
M

)
pM (1− p)N−MPXK+2

[j]

44 end
45 end
46 Ps ←

∑N
i=QC P{YK+2 = i}

47 return Ps

Fig. 3: Throughput: Theoretical vs. simulation results

Fig. 4: Consensus time: Theoretical vs. simulation results

Finally, we assumed that Byzantine or faulty nodes can
either send invalid responses or do not send any response to
the block proposal, QC, or QC-of-QC. In the simulation code,
faulty nodes always send an invalid response that gets deleted
in the destination node. In addition, the validators that their
valid votes get deleted due to packet loss are also treated as
faulty nodes.

Results and discussion: In Figure 3 and Figure 4, we depict
the results of our experiments for transaction throughput and
consensus time versus the number of validators for different
numbers of Byzantine validators in the Diem blockchain with
the aforementioned settings. First, as we can see, the simula-
tion results closely follow the theoretical amounts. Second, as
it is expected, when increasing the number of faulty validators,
throughput goes down and consensus time goes up. Another
interesting conclusion that can be derived is that while there is
at least one faulty node and f < f∗, increasing the number of
validator nodes can improve the performance of the systems.
However, when the number of Byzantine validators is equal
to the maximum number of tolerable Byzantine validators (i.e.
f = f∗), there is no benefit in adding more honest validators.
It is to be noted that when f = f∗ for a network with a certain
number of validators when we add one or more validators,
f will be no longer equal to f∗ as long as all of the new
validators are honest.

Our theoretical model can be used for performance analysis
of Diem blockchain against a variety of configuration param-
eters. We studied the impact of communication quality on the

(a) f = f∗

(b) f = f∗ − 1

(c) f = f∗ − 2

Fig. 5: Throughput versus p

performance of the Diem. We calculated system throughput
for different amounts of p when the network is ideal and
when there is packet loss in the network. In an ideal case
or when p = 1, the model assumes that all the packets
reach their destination within a certain time interval before
the destination validator times out. Results can be seen in
Figure 5. We first conducted the simulation for a network
in which f = f∗. Results of this situation are shown in
Figure 5a. one can observe that the network has a normal
throughput when p = 1. But when the p is slightly decreased
to 0.99 or 0.98, the system throughput tends to zero. This
happens when the number of Byzantine validators still does
not violate the maximum amount of f∗. This fact shows that
the condition of f ≤ f∗ might not be enough to guarantee
a non-zero throughput for the system. Instead, the liveness of
the system is highly dependent on the limited number of re-
transmissions and consequently the limited amount of delay
for delivering the messages to the validator nodes.

In another set of experiments, we reduced the number of
faulty nodes to f = f∗ − 1. In this configuration, the quorum
size is still 2f∗ + 1. For a network with N = 4, when the

network is ideal (i.e. p = 1) and there is no packet loss, we
observe a high throughput compared to the throughput for the
rest of the network sizes. That is because when N = 4, then
f∗ − 1 = 0 and hence there is no faulty node in the network.
For N = 13, the throughput drastically goes down due to the
presence of one faulty validator in the system. When p = 0.99,
we observe the same pattern when we increase the network
size until N = 40. At this point, the throughput goes down
and tends to zero again. It happens because one of the leaders
is not able to gather enough valid and positive votes for the
proposal. A similar pattern happens when p = 0.98 but the
throughput goes down faster when N = 22.

In another set of experiments, we are interested to study
the impact of different amounts of τo on the performance
of the system. We first conducted the experiments for a
lossless network in which we assume p = 1. The results
can be seen in Figure 6. We conducted the experiments
for three conditions: when there is no faulty node in the
network when there is only one faulty node in the network,
and when there are f∗ faulty nodes in the network. We
repeated all experiments for the different network sizes in
which N = 100, N = 76, and N = 49. Results for a lossless
network with no Byzantine node are depicted in Figure 6a. We
did not observe any meaningful difference in the transaction
throughput for networks with different sizes. However, for
1 ≤ τo ≤ 6. The reason is that for this setting, E[Ts] is a
bit more than 6 seconds (i.e E[Ts] = 6.01sec). Hence when
all the clients set τo to an amount between 1 to 6 seconds,
they will always abort their proposed transaction and there
will be no processed transaction. When τo is set to an amount
of more than 6 seconds, the throughput reaches the maximum
amount since there is no faulty node in the network. When
we put a Byzantine validator in the system, we can see the
effect of a higher τo as depicted in Figure 6b. We observe that
throughput is still zero when 1 ≤ τo ≤ 6. The justification is
the same as when f = 0. Nevertheless, throughput goes down
for higher amounts of τo. As well, we observe that for the
same amount of τo, bigger networks exhibit more throughput.
That is because the ratio of honest nodes is higher for bigger
networks. Hence, we can conclude that when there is a faulty
node in the network, throughput can be compensated by adding
extra validators to the system. In another set of experiments,
we put f∗ Byzantine nodes in the network. Results can be
observed in Figure 6c. Once again we see a zero throughput
for 1 ≤ τo ≤ 6. After that, throughput decreases when tauo
is increased. Since p = 1, all the networks follow the same
pattern.

In the next set of experiments, we assumed that the network
is lossy (i.e. p 6= 1). Results for p = 0.99 and p = 0.98
are shown in the Figure 7 and Figure 8 respectively. When
there is no Byzantine node in the network, for both cases we
see almost the same pattern as the lossless network. But in
the presence of a faulty node, results are a bit different (see
the Figures 7b and 8b). In both cases, we observe a lower
throughput for a smaller network. The justification is the same
as before for the lossless network. As expected, for the same

(a) f = 0 (b) f = 1 (c) f = f∗

Fig. 6: System throughput in different conditions when p = 1

(a) f = 0 (b) f = 1 (c) f = f∗

Fig. 7: System throughput in different conditions when p = 0.99

(a) f = 0 (b) f = 1 (c) f = f∗

Fig. 8: System throughput in different conditions when p = 0.98

amount of τo, we observe less throughput when p = 0.98
compared to when p = 0.99. Finally, we put f∗ Byzantine
nodes in the network as shown in the Figures 7c and 8c. The
throughput is zero for all amounts of τo. Although E[Ts] =
6.01sec, and for amounts of 7 ≤ τo, we expect to have a
non-zero throughput, nevertheless, validators fail to reach a
consensus since the leader is not able to gather 2f + 1 votes
due to packet loss in the network or validators time-outs. This
is an interesting and important situation since we observe that
the condition of f ≤ N−1

3 is not enough for the liveness of
the system.

VI. CONCLUSION

In this paper, we proposed a theoretical performance model
for the PBFT consensus algorithm of the Diem blockchain
network and validated it with a set of simulations carried
out using OMNeT++. As well, we presented a performance
analysis and studied the system throughput for a variety of
network sizes with a different number of faulty nodes. We
observed that the throughput is highly dependent on the quality
of service when there are faulty nodes in the network.

Setting a too low amount of time-out in clients can lead
them to frequently abort their queries while setting a too

high amount of time-out may slow down the network and
consequently reduce the throughput. Moreover, setting an
inappropriate time-out amount in validators can slow down the
network in another way. Our future work is to leverage this
model to dynamically determine the optimal timeout value for
the clients and validators in order to maximize the throughput.

ACKNOWLEDGEMENT

We would like to acknowledge (name withdrawn) (affili-
ation withdrawn) for their advice during the entire project
presented in this article.1

1Withdrawn for the purpose of the double-blind review.

REFERENCES

[1] Z. Amsden, R. Arora, S. Bano, M. Baudet, S. Blackshear, A. Bothra,
G. Cabrera, C. Catalini, K. Chalkias, E. Cheng et al., “The libra
blockchain,” URl: https://developers.libra.org/docs/assets/papers/the-
libra-blockchain.pdf, accessed: 20-6-2020.

[2] “State machine replication in the libra blockchain,” https://diem-
developers-components.netlify.app/papers/diem-consensus-state-
machine-replication-in-the-diem-blockchain/2020-05-26.pdf, accessed:
20-6-2020.

[3] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus in the lens of blockchain,” arXiv preprint
arXiv:1803.05069, 2018.

[4] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[5] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[6] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[7] M. Nasreen, A. Ganesh, and C. Sunitha, “A study on byzantine fault
tolerance methods in distributed networks,” Procedia Computer Science,
vol. 87, pp. 50–54, 2016.

[8] M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo, “Byzantine
consensus in asynchronous message-passing systems: a survey,” Inter-
national Journal of Critical Computer-Based Systems, vol. 2, no. 2, pp.
141–161, 2011.

[9] Y. Yang, “Linbft: Linear-communication byzantine fault tolerance for
public blockchains,” arXiv preprint arXiv:1807.01829, 2018.

[10] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Sok: Consensus in the age of blockchains,”
in Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 183–198.

[11] S. Agrawal and K. Daudjee, “A performance comparison of algorithms
for byzantine agreement in distributed systems,” in 2016 12th European
Dependable Computing Conference (EDCC). IEEE, 2016, pp. 249–260.

[12] A. Momose and L. Ren, “Optimal communication complexity of byzan-
tine consensus under honest majority,” arXiv e-prints, pp. arXiv–2007,
2020.

[13] T. Distler, “Byzantine fault-tolerant state-machine replication from a
systems perspective,” ACM Computing Surveys (CSUR), vol. 54, no. 1,
pp. 1–38, 2021.

[14] C. Berger and H. P. Reiser, “Scaling byzantine consensus: A broad
analysis,” in Proceedings of the 2nd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, 2018, pp. 13–18.

[23] “Blinded for review,” 2020.

[15] T. Loruenser, B. Rainer, and F. Wohner, “Towards a performance
model for byzantine fault tolerant (storage) services,” arXiv preprint
arXiv:2101.04489, 2021.

[16] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs.
bft replication,” in Open Problems in Network Security, J. Camenisch
and D. Kesdoğan, Eds. Cham: Springer International Publishing, 2016,
pp. 112–125.

[17] J. Zhang, J. Gao, Z. Wu, W. Yan, Q. Wo, Q. Li, and Z. Chen, “Perfor-
mance analysis of the libra blockchain: An experimental study,” in 2019
2nd International Conference on Hot Information-Centric Networking
(HotICN). IEEE, 2019, pp. 77–83.

[18] W. Li and M. He, “Comparative analysis of bitcoin, ethereum, and libra,”
in 2020 IEEE 11th International Conference on Software Engineering
and Service Science (ICSESS). IEEE, 2020, pp. 545–550.

[19] X. Fu, H. Wang, and P. Shi, “A survey of blockchain consensus algo-
rithms: mechanism, design and applications,” Science China Information
Sciences, vol. 64, no. 2, pp. 1–15, 2021.

[20] M. Dabbagh, K.-K. R. Choo, A. Beheshti, M. Tahir, and N. S. Safa, “A
survey of empirical performance evaluation of permissioned blockchain
platforms: Challenges and opportunities,” Computers & Security, vol.
100, p. 102078, 2021.

[21] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath, “Bft
protocol forensics,” arXiv preprint arXiv:2010.06785, 2020.

[22] J. Niu, F. Gai, M. M. Jalalzai, and C. Feng, “On the performance of
pipelined hotstuff,” arXiv preprint arXiv:2107.04947, 2021.

[24] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th annual symposium on foundations of computer science (cat. No.
99CB37039). IEEE, 1999, pp. 120–130.

[25] “The libp2p project,” https://libp2p.io, accessed: 20-6-2020.
[26] “The multiaddr project,” https://multiformats.io/multiaddr, accessed: 20-

6-2020.
[27] “The yamux project,” https://github.com/hashicorp/yamux, accessed: 20-

6-2020.
[28] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-

tic processes. Tata McGraw-Hill Education, 2002.
[29] H. Fukś, A. T. Lawniczak, and S. Volkov, “Packet delay in models

of data networks,” ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 11, no. 3, pp. 233–250, 2001.

[30] A. M. Sukhov, M. Astrakhantseva, A. Pervitsky, S. Boldyrev, and
A. Bukatov, “Generating a function for network delay,” Journal of High
Speed Networks, vol. 22, no. 4, pp. 321–333, 2016.

[31] “Omnet++ simulator,” available at http://www.omnetpp.org.
[32] M. Hassan and R. Jain, High performance TCP/IP networking. Prentice

Hall Upper Saddle River, NJ, 2003, vol. 29.

IBFT extension

yahya.shahsavari.1

December 2021

1 Background and IBFT system model

Although IBFT inherits the main features from the well-known PBFT, however,
it slightly differs from it. The main difference is that there is no specific entity
as a client in IBFT protocol. Instead, All of the validators can be seen as clients
and the block proposals are proposed by validators. The mentioned proposers
are being selected at the beginning of each round in a round-robin fashion.

Similar to PBFT, consensus is achieved in a set of phases known as: pre−
prepare, prepare, and commit. At the beginning of pre-prepare phase, the
proposer validator generates a block proposal from the transactions already
gathered from the transaction pool and appends a pre-prepare message to the
block and broadcasts it to rest of the validators. Upon receiving this message,
validators enter pre-prepared state. Afterward, validators start the prepare
phase and broadcast a prepare message. This phase is required in order to ensure
that all of the validators are working at the same round and block sequence
number. Once any validator gathers 2f + 1 prepare messages, it enters the
prepared state and informs the rest of the validators that it has accepted this
block and is going to add it to the chain via broadcasting a commitmessage to all
of the validators. Finally, validators will wait to receive at least 2f + 1 commit

message. Upon gathering 2f + 1 commit messages, the validator will enter
committed state and will add the proposed block to the ledger. It is to be noted
that for the sake of preventing faulty nodes from generating invalid blocks and
hence starting a separate chain, each validator appends 2f +1 received commit
signatures to extraData field in the header before inserting it into the chain.
Therefore forks do not happen in IBFT consensus protocol.

To find the probability of reaching a consensus in Quorum network we act
as follows:

Consider a network of N validators and f faulty nodes. We denote any arbi-
trary validator by Vn. suppose this network is acting in round K. In each round,
a successful consensus happens in three phases as already mentioned. Consensus
happens if an arbitrary honest validator gathers at least 2f+1 commit messages.
Let random variable Xn denote the number of commit messages gathered by
any arbitrary validator in the last phase. The probability of gathering at least
2f + 1 commit messages by Vn can be computed as follows:

1

P{Xn ≥ 2f + 1} =
N∑

n=2f+1

(
j

n

)
pn(1− p)j−n (1)

where j denotes the number of validators that already gathered at least
2f + 1 prepare messages at the end of last phase (i.e prepare phase). Now
let us define random variable X as the number of validators that successfully
gathered at least 2f + 1 commit messages at the end of commit phase. As
well consider the random variable Y , as the number of nodes that successfully
gathered at least 2f + 1 prepare messages at the end of prepare phase. Also,
let random variable Z denote the number of nodes that received pre-prepare

messages at the end of pre-prepare phase. We can now calculate the probability
i honest validators gather at least 2f +1 commit messages at the end of commit
phase:

P{X = i} =
N∑
j=i

P{X = i|Y = j}P{Y = j} (2)

Where P{Y = j} is the probability that j honest validators already gathered
prepare messages in previous phase and can be calculated as follows:

P{Y = j} =
N∑

k=j

P{Y = j|Z = k}P{Z = k} (3)

Where P{Z = k} is the probability that k honest validators already gathered
pre-prepare messages at the end of pre-prepare phase and can be calculated
as follows:

P{Z = k} =
(
N

k

)
pk(1− p)N−k (4)

It is now helpful to calculate P{X = i|Y = j}:

P{X = i|Y = j} =
(
j

i

)
αi(1− α)j−i (5)

where α = P{Xn ≥ 2f + 1} and was computed in Equation (1).
in the same way:

P{Y = j|Z = k} =
(
k

j

)
βj(1− β)k−j (6)

where

β = P{Yn ≥ 2f + 1} =
N∑

n=2f+1

(
k

n

)
pn(1− p)k−n (7)

2

Figure 1: Overview of the IBFT protocol: a proposed block gets committed to
the ledger it three consecutive phases

and Yn is The probability of gathering at least 2f + 1 prepare messages by
Vn.

We assume consensus is reached and the block is inserted in the blockchain
when at least one validator gathers 2f + 1 commit messages. Therefore, the
probability of reaching a consensus can be computed as follows:

Ps =

N∑
i=1

P{X = i} (8)

now let us to calculate the system throughput

E[Tc] = E[Ts] + (1− ps)τo (9)

Assume npp, np, and nc respectively are the number of nodes at the end of
pre-prepare, prepare and commit phases that gather at least 2f+1 pre-prepare,
prepare, and commit messages respectively. These parameters can be easily
calculated as follows

npp = Np (10)

np = npp

2f+1∑
n=npp

(
npp

n

)
pn(1− p)npp−n (11)

and in the same way:

nc = np

2f+1∑
n=np

(
np

n

)
pn(1− p)np−n (12)

3

Rest of the calculation in order to obtain E[Ts] and consequently the system
throughput is exactly the same as what we did in Diem BFT.

4

