

CAHIER DE RECHERCHE DE

LA CHAIRE FINTECH

AMF – FINANCE MONTRÉAL

Toward scalable systems for

securities on blockchains

Par Jeremy Clark

Concordia University

Décembre 2021

Projet réalisé dans le cadre du 2ème appel de projets

de la Chaire « Les Fintechs du Québec : du

développement de l’écosystème à l’expérience, de

la réglementation aux enjeux de sécurité »

Toward Scalable Systems for Securities
on Blockchains
Prepared for: Chaire Fintech – AMF / Fintech Montreal
Prepared by: Jeremy Clark (co-PI Kaiwen Zhang, ETS, separate report)
Prepared on: Dec 1 2021
Final Report

Project background information
The goal of this project is to study the technical feasibility of managing securities on
blockchains, using use cases inspired from CDBC and Decentralized Finance (DeFi). An
emphasis is placed on scalability which is a bottleneck with permissionless blockchains
like Ethereum and to a lesser extent, its permissioned variant Quorum.

Activities performed
One important aspect of on-chain securities is acquiring pricing information about assets,
in particular when the on-chain assets are derivatives. Derivatives are a main focus of AMF
as the jurisdiction houses the Montreal Stock Exchange. However unlike publicly traded
derivative markets, much DeFi activity conducted on-chain is unregulated and does
originate from a well-defined jurisdiction. Since a blockchain is only authoritative over its
own data, off-chain data must be relayed to the blockchain by some (trusted or untrusted)
third party service. These are called oracles.

Our group conducted a study of oracle technology, which was accepted at ACM’s top
conference on financial technology (acceptance rate: 20%). This project involves 1 PhD
student (Shayan Eskandari) and 1 MASc student (Mehdi Salehi), as well as an outside
collaborator from Stanford University (Catherine Gu). It was presented at AFT by Shayan
Eskandari, as well as being presented to AMF, Raymond Chabot Grant Thornton, and we
are arrange future presentations of this work.

• Shayan Eskandari (Concordia & ConsenSys Dilegence), Mehdi Salehi (Concordia),
Wanyun Catherine Gu (Stanford & Visa), Jeremy Clark (Concordia). SoK: Oracles from
the Ground Truth to Market Manipulation. ACM Advances in Financial Technology
(ACM AFT 2021).

We also undertook exploration of scalability solutions called optimistic roll-ups which allow
on-chain smart contracts to be executed off-chain (reducing on-chain fees by upward of
99.9% based on our practical experiments), while maintaining a similar level of security to
running the contract on-chain. In particular, anyone can file a very efficient-to-resolve
dispute if a computation performed off-chain is reported incorrectly to Ethereum or another
blockchain. Optimistic roll-ups are called “Layer 2” scalability solutions because they are
an overlay on the “Layer 1” blockchain technology. Layer 1 includes the network relaying
and consensus mechanism. Layer 1 is the research focus of my co-PI Kaiwen Zhang at
ETS. Layer 1 and Layer 2 solutions are complimentary and can be used together to
increase scalability.

My PhD student (Mahsa Moosavi) is examining the security and efficiencies of “bridges”
which are a system of smart contracts that move assets (cryptocurrencies and other
tokens) from Layer 1 to Layer 2, provide a representation of the asset for use on Layer 2,
and then allow the asset to be withdrawn from Layer 2 back to Layer 1. Bridges are very
complex and have under-explored security issues. The issue we are focused on with
withdrawing from Layer 2, which requires Layer 1 to be absolutely sure of what occurred
on Layer 2 (finality was reached) and current proposals like Offchain Lab’s Arbitrum require
1 week for finality. (Based on the knowledge acquired in this project, Mahsa took a part-
time position at Offchain Labs, a leading Layer 2 provider.) We have three designs for “fast”
withdraws that allow a user to move Layer 2 to Layer 1 instantly, while a counter-party
takes the risk that the withdraw will not finalize. We are implementing one of the three
solutions. Our work in this area is incomplete but we will acknowledge the FinTech Chairs
when it is completed and published (anticipated in Winter term 2022).

A final contributor to this work is Didem Demirag (PhD) who examine the applicability of
Arbitrum to Central Bank Digital Currency (CBDCs). This work compliments the research of
Kaiwen Zhang who examined Layer 1 improvements for applications to CBDCs and other
DeFi protocols. Our work is completed but not substantial enough to publish. We have
since moved on to studying privacy issues with CBDCs (not funded by this grant) but may
in the future write a comprehensive report on CBDCs that includes both the scalability
aspects from this grant, combined with the privacy aspects from another grant (Privacy
Commissioner of Canada).

Transparency statement on overlapping funding
In the past, I have held funding from AMF under the EGGF program under with the
research project “Understanding blockchains through experimentation” with Emilio
Boulianne at JMSB, Concordia. This funding ceased before applying and undertaking this
grant. However since undertaking this project, we received additional funding from AMF for

a continuation of our original project (this was after the initial progress report for this
project). For the sake of transparency, I did not expense anything to the AMF grant while
holding this grant. Further, the two research projects are independent projects with
different research questions.

Financial statement
Statement of Revenue and Expenditures to be forwarded by the university.

When this project was awarded, all students involved in this project were already paid
through bursaries until April 30, 2021. Despite being paid from other sources (e.g.,
NSERC), the students conducted the initial research on this project. This project’s funding
was then used to fund them from May 1, 2021 until the end of the project Nov 30, 2021. In
the case of Mehdi Salehi, his funding was matched by the Gina Cody School of
Engineering.

Student Amount
Shayan Eskandari (PhD) 13,333
Seyedehmahsa Moosavi (PhD) 6,667
Didem Demirag (PhD) 3,333
Mehdi Salehi (MASc) 1,667

SoK: Oracles from the Ground Truth to Market Manipulation
Shayan Eskandari∗
Concordia University
Montreal, QC, Canada
ConsenSys Diligence
Brooklyn, NY, USA

Mehdi Salehi∗
Concordia University
Montreal, QC, Canada

Wanyun Catherine Gu
Stanford University
Stanford, CA, USA

Jeremy Clark
Concordia University
Montreal, QC, Canada
j.clark@concordia.ca

ABSTRACT
One fundamental limitation of blockchain-based smart contracts is
that they execute in a closed environment. Thus, they only have
access to data and functionality that is already on the blockchain, or
is fed into the blockchain. Any interactions with the real world need
to be mediated by a bridge service, which is called an oracle. As de-
centralized applications mature, oracles are playing an increasingly
prominent role. With their evolution comes more attacks, necessi-
tating greater attention to their trust model. In this systemization
of knowledge paper (SoK), we dissect the design alternatives for
oracles, showcase attacks, and discuss attack mitigation strategies.
ACM Reference Format:
Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark.
2021. SoK: Oracles from the Ground Truth to Market Manipulation. In 3rd
ACM Conference on Advances in Financial Technologies (AFT ’21), September
26–28, 2021, Arlington, VA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3479722.3480994

1 INTRODUCTION
With billions of dollars at stake, decentralized networks are prone
to attacks. It is essential that the smart contracts, which govern how
systems are run on these networks, are executed correctly. Public
blockchains, like Ethereum, ensure the correct execution of smart
contract code by taking the consensus of a large, open network
of nodes operating the Ethereum software. For consensus to form,
many nodes need to make decisions based on the exact same input
data. Hypothetically, if a decision requires nodes to fetch data or
use a service provider outside of the blockchain, there can be no
guarantee that every node in a global network has the same access
and view of this external source. For this reason, blockchains only
execute on internal sources: data and code provided in a current
transaction, or past data and code already stored on the blockchain.
∗S. Eskandari and M. Salehi are equal first authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AFT ’21, September 26–28, 2021, Arlington, VA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9082-8/21/09. . . $15.00
https://doi.org/10.1145/3479722.3480994

Many potential decentralized applications seem very natural
until the designer hits the ‘oracle problem’ and realizes an inter-
face to the external world is required. An oracle is a solution to
this problem. It is a service that feeds off-chain data into on-chain
storage. The trust model of oracles vary—some data comes with
cryptographic certification while other data is assumed to be true
based on trusting the oracle, or a set of oracles. Oracle-supplied
data cannot easily be changed or removed once finalized on-chain,
allowing disputes over data accuracy to be based on a public record.
Leveraging this immutability is one approach to incentivizing ora-
cles to post truthful information.

We aim to construct in this paper a systematization of knowledge
(SoK) of implementation choices for oracles, facilitated by breaking
down the operation of an oracle into a set of modules. For each
module, we explore potential system vulnerabilities and discuss
attack vectors. We also aim to categorize all the significant oracle
proposals of different projects within a taxonomy we propose. The
goal of this SoK is to help the reader better understand the system
design for oracles across different use cases and implementations.

2 PRELIMINARIES
Ethereum [111] is a prominent public blockchain with the largest de-
veloper headcount. While oracles are applicable to any blockchain,
we will adopt Ethereum as a concrete example of a blockchain for
the purposes of explaining each concept in this paper. Ethereum is
inspired by Bitcoin but adds a verbose language for programming
smart contracts that execute on the Ethereum Virtual Machine
(EVM). All transactions and executions are verified by a decentral-
ized network of nodes. Solidity is the main high-level programming
language used by developers for developing smart contracts and
decentralized applications (DApps). Smart contracts are small code
bases that live on a blockchain. In short, smart contracts can be seen
as blackbox applications that get inputs from a user and follow the
code flow to the output, which can update the state of the contract
and trigger monetary transactions.

The Oracle Problem. Smart contracts cannot access external re-
sources (e.g., a website or an online database) to fetch data that
resides outside of the blockchain (e.g., a price quote of an asset).
External data needs to be relayed to smart contracts with an oracle.
An oracle is a bridge or gateway that connects the off-chain real
world knowledge and the on-chain blockchain network. The ‘or-
acle problem’ [22] describes the limitation with which the types

127

https://doi.org/10.1145/3479722.3480994
https://doi.org/10.1145/3479722.3480994
https://doi.org/10.1145/3479722.3480994

AFT ’21, September 26–28, 2021, Arlington, VA, USA Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark

of applications that can execute solely within a fully decentralized,
adversarial environment like Ethereum. Generally speaking, a pub-
lic blockchain environment is chosen to avoid dependencies on
a single (or a small set) of trusted parties. One of the first oracle
implementations used a smart contract in the form of a database
(i.e., mapping1) and was updated by a trusted entity known as the
owner. More modern oracle updating methods use consensus pro-
tocol with multiple data feeds or polling techniques based on the
‘wisdom of the crowd’. The data reported by an oracle will always
introduce a time lag from the data source and more complex polling
methods generally imply longer latency.

Trusted Third Parties. A natural question for smart contract de-
velopers to ask is: if you trust the oracle, why not just have it
compute everything? There are a few answers to this question: (1)
there may be benefits to minimizing the trust (i.e., to just providing
data instead of full execution), (2) there are widely trusted organi-
zations and institutes—convincing one to operate an oracle service
is a much lower technical ask than convincing one to operate a
complete platform, and (3) if a data source becomes untrustworthy,
it may require less effort to switch oracles than to redeploy the
system.

Methodology. We found papers and other resources by exam-
ining the proceedings of top ranked security, cryptography, and
blockchain venues; attending blockchain-focused community events;
and leveraging our expertise and experience. Our inputs include
academic papers, industry whitepapers, blog and social media
posts, and talks at industry conferences on blockchain technology,
Ethereum, and decentralized finance (DeFi).

Oracle Use-Cases. Oracles have been proposed for a wide variety
of applications. Based on our reading, most of the use-cases fall
into one of the main categories below.

• Stablecoins [26, 54, 74, 77, 86] and synthetic assets [93]
require the exchange rate between the asset they are price-
targeting and the price of an on-chain source of collateral.

• Derivatives [11, 44, 98] and prediction markets [25, 87]
require external prices or event outcomes to settle on-chain
contracts.

• Provenance systems [92, 102] require tracking informa-
tion of real world assets like gold, diamonds, mechanical
parts, and shipments.

• Identity [63, 75] and other on-chain reputation systems re-
quire knowledge of governmental records to establish iden-
tities.

• Randomness [21] can only be produced deterministically
on a blockchain. In order to use any non-deterministic ran-
dom number, an external oracle is needed to feed the random-
ness into the smart contract. Lotteries [88] and games [47]
are examples. Additionally, cryptographic tools like verifi-
able random functions (VRF) [52, 76] and verifiable delay
functions (VDFs) [14, 18] can mitigate, respectively, any pre-
dictability or manipulability in the randomness.

• Decentralized exchanges can use prices from an exter-
nal oracles to set parameters. On-chain market makers [60]

1A Solidity mapping is simply a key-value database stored on a smart contract.

uses such prices to minimize the deviation from the exter-
nal market prices and tailor the pricing function. Addition-
ally, some use oracles to provide sufficient liquidity near
the mid-market price for more efficient automated market
making [39, 91, 113].

• Dynamic non-fungible tokens (NFTs) [13] are crypto-
collectables that can be minted, burned, or updated based
on external data. For example, sports trading cards which
depends on the real-time performance of a player.

3 RELATEDWORK
Given this paper is a systemization of knowledge (SoK), we will
review work on oracles themselves throughout the paper. In this
section, we only discuss other works with a similar goal of provid-
ing an overview of different approaches to oracle design, operation,
and security. Al-Breiki et al. [4] present a trust-based categorization
of oracle systems, as well as the type of interaction that the on-
chain component of the oracle has with the off-chain components.
Liu and Szalachowski [70] focus on oracles in the decentralized
finance (DeFi) ecosystem, presenting technical architectures and a
measurement study on deviations between external market prices
and on-chain data from commonly used price oracles. Lo et al. [71]
propose a framework for assessing the reliability of oracles and
ranked them based on the failure probability rate. Angeris and Chi-
tra [6] analyze the logic behind Automated Market Maker (AMM)
projects (e.g., Uniswap [1] and Balancer [8]) and discuss how these
projects could be used as price feeder oracles for other systems.
Williams and Peterson [109] map oracle systems into two groups—
requesters and reporters— and perform a game theoretical analysis
of three defined scenarios between requesters and reporters.

By contrast, in our work, we inspect 17 different oracle systems2
and breakdown their design decisions and mechanism implemen-
tations (listed in Table 2). We also discuss theoretical and possible
attacks on the different building blocks of the oracle systems. Com-
paratively, we look at a broader types of oracles, including price
oracles, binary outcome oracles, and oracle systems, for any type
of data such as weather condition information.

4 MODULARWORK FLOW
For our main contribution, we deconstruct how an oracle operates
into several modules that generally operate sequentially (but in
some solutions, certain steps are skipped) and then we study each
module one-by-one. An overview of the work flow is as follows:

4.1 Ground Truth: The goal of the oracle system is to relay
the ground truth (i.e., the real true data) to the requester of
the data.
4.2 Data Sources: Data Sources are entities that store or
measure a representation of the ground truth. There are
a diverse set of data sources: databases, hardware sensors,
humans, other smart contracts, etc.
4.3Data Feeders: Data feeders report off-chain data sources
to an on-chain oracle system. In order to incentivize truthful
data reporting, an oracle system can introduce a mechanism
to select data feeders from a collection of available data
providers. The incentive mechanism can be collateral-based,

2To our knowledge, a much larger set than other research on oracle systems.

128

SoK: Oracles from the Ground Truth to Market Manipulation AFT ’21, September 26–28, 2021, Arlington, VA, USA

such as staking, or reputation-based to find a reliable set of
data feeders for each round of selection.
4.4 Selection of Data Feeders: The process of determining
which data feeders should be used in an oracle system can
be categorized into two main types: centralized and decen-
tralized selection.
4.5 Aggregation: When data is submitted by multiple data
feeders, the final representation of the data is an aggregation
of each data feeder’s input. The aggregation method can be
random selection or algorithmic rule-based, such as using
weighted average (the mean) or majority opinion. The design
of the aggregation method is one of the most important
aspects of an oracle system, as intentional manipulation
or unintentional errors during the aggregation process can
result in untruthful data reporting by the oracle system.
4.6 Dispute Phase: Some oracle designs allow for a dispute
phase as a countermeasure to oracle manipulation. The dis-
pute phasemight correct submitted data or punish untruthful
data feeders. The dispute phase might also introduce further
latency.

The steps above are visualized in Figure 1. Next we dive deeper
into the modular workflow by trying to further define each module.
As appropriate, we also discuss feasible attacks on the modules and
possible mitigation measures.

4.1 Ground Truth
While not a module itself, ground truth is the initial input to an
oracle system. Oracle designers cannot solve basic philosophical
questions like what is truth? However it has to be understood (i)
what the data actually represents and (ii) if it is reliable. Data is
sometimes sensitive to small details. Consider a volatility statistic
for a financial asset: basics like which volatility measure is being
used over what precise time period are obvious, but smaller things
like the tick size of the market generating the prices could be rele-
vant [48]. When data is aggregated from multiple sources, minor
differences in what is being represented (called semantic hetero-
geneity) can lead to deviations between values [55, 73, 112].

While oracle systems will attempt to solve the issue of mali-
cious participants who mis-report the ground truth, it does not
address the fundamental question of whether the ground truth
itself is reliable. Some philosophers argue truth is observed, and
observations require a ‘web of beliefs’ that is subject to error (for
its consequences in security, see [59]). Reliability is judged by the
assumptions made about the data source, described next.

4.2 Data Sources
Data Sources are defined here as passive entities that store and mea-
sure the representation of the ground truth. Common types of data
sources include databases, sensors, humans, smart contracts,
or a combination of them. Depending on how data sources gather
and retrieve the ground truth, different attack types arrise. Using a
hybrid of data sources (if possible) could reduce the reliability on
a single point of input. We describe each common type and their
security considerations.

4.2.1 Humans. A human may provide the requested data, either
by direct observation or by indirectly relaying data from another

Figure 1: A visualization of our oracle workflow as described in the text.

data source. Humans are prone to errors which is the main risk of
this data source. Human errors include how the data is retrieved,
how the data collector interprets the truth, and if data is relayed
from a reliable source. Researchers have categorized human errors
into the following three types (from least to most probable): very
simple tasks, routine tasks, and complicated non-routine tasks [71].
An example for each category is, respectably, reading Bitcoin’s

129

AFT ’21, September 26–28, 2021, Arlington, VA, USA Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark

exchange rate from an unverified source, inputting the data into
the system, and configuring the oracle system.

Humans may also act maliciously and deliberately report wrong
data when they perceive it will benefit them. As we will see in
further modules, a robust oracle system will use incentives and
disputes to promote truthful statements.

4.2.2 Sensors. Sensors are electronic devices that collect raw data
from the outside world and make it available to other devices. The
data source may use more than one sensor to obtain the desired data.
One example from traditional finance is the weather derivative, first
introduced by the Chicago Mercantile Exchange (CME) [79]. These
instruments use weather data provided by trusted institutions, such
as the National Climate Data Center,3 which collects weather data
through a network of sensors.

Provenance is a highly cited application of blockchain, where
products are tagged and traced through out the supply chain, in-
cluding transportation, for management and/or certification [78,
102, 114]. The tags could be visual (barcodes) or electronic (RFID).
A host of attacks on RFID have been proposed outside of blockchain
oracles [5]. Blockchain technology does not solve some important
trust issues: ensuring the proper tag is affixed to the proper product,
each product has one tag, each tag is affixed to only one product,
and tags cannot be transferred between products. This is called the
stapling problem [92].

Sensors can produce noisy data or malfunction. The hardware
of a sensor can also be modified when remote or physical access
is unauthenticated (or weakly authenticated as many sensors are
constrained devices). Probably the highest profile sensor attack
(outside of blockchain) is Stuxnet [67]—malware that manipulated
the vibration sensors, the valve control sensors, and the rotor speed
sensors of Iran’s nuclear centrifuges, causing the system to quietly
fail [66].

4.2.3 Databases and application programming interfaces (APIs).
The most common mechanism used by software to fetch data is to
use an API to obtain the data directly from a centralized database. A
database is a set of tables that collect system events, while the API
is an interface with the database. For example, a financial exchange
keeps track of information in a database about every trade that has
been executed. A data source that needs the daily traded volume of
an asset could use the appropriate API of the exchange’s database
to extract the data from the related table in the database.

An active attacker can attack the system from two points. Mod-
ifying the data at rest in the database, or modifying the data in
transit before and after the API call.

4.2.4 Smart Contracts. Smart contract could be used as a data
source similar to a database. Decentralized finance (DeFi) appli-
cations on Ethereum include decentralized exchange services like
Uniswap [1], or other oracles that operate on-chain. For instance
API3 oracle [9] uses other on-chain oracles, called dAPIs, as their
data source. These oracles are whitelisted through voting by API3
token holders.

Automated Market Makers (AMMs) [107] are an on-chain alter-
native to centralized exchanges. Liquidity providers collateralize

3https://www.ncdc.noaa.gov/

the contract with an equally valued volume of two types of cryp-
toassets. A mathematical rule governs how many assets of the one
type are needed to purchase assets of the other. A well-known
example of such mathematical rule is the Constant Function Market
Makers (CFMM) to calculate the exchange rates of tokens in a sin-
gle trade [95]. The idea behind AMM was first raised by Hanson’s
logarithmic market scoring rule (LMSR) for prediction markets [56].
A class of DeFi projects (e.g., Uniswap [1, 2] and Balancer [8]) uses
CFMM to automate their market-making process. One of the utiliza-
tions of AMM is the ability to measure the price of an asset in a fully
decentralized way, which addresses the pricing oracle problem [6].

One potential attack vector to the auto price discovery mecha-
nism in an AMM is to manipulate prices provided by an algorithm,
since the algorithmic rules used by an AMM is written in the smart
contract and therefore how prices are quoted by the AMM can be
calculated in advance. One real case example on bZx is described
in Section 5.3.2. In addition to market manipulation, smart contract
vulnerabilities [7, 24] could possibly be used to influence the data
coming from the Oracle, which we will discuss more in section 5.3.

4.3 Data Feeders
Data feeders are entities who gather and report the data from a data
source (Section 4.2) to the oracle system. A common configuration
consists of an external feeder which draws from off-chain data
sources and deposit the data to an on-chain module. In case the
data source is already on the blockchain, the data feeder step can
be skipped.

It is not common to assume data feeders are fully honest, how-
ever a variety of threat models exist. Generally, this module will
not attempt to determine if the data has been falsified (the later
sections data selection (Section 4.4), data aggregation (Section 4.5)
and dispute phase (Section 4.6) modules will deal with this issue);
rather it will consist of tunnelling the data through the feeder
with some useful security provisions. We discuss most important
security provisions to achieve data integrity, confidentiality, and
non-repudiation on any specific data.

4.3.1 Source Authentication. Data integrity can be enhanced by au-
thenticating the source of the data and ensuringmessage integrity is
preserved. It is sufficient to have the source sign the data, assuming
the source’s true signature verification (i.e., public) key is known
to the recipient of the data. This is most appropriate for sources
like humans and sensors (although sensors may use a lightweight
cryptographic alternative to expensive digital signatures [94]).

Databases, websites, and APIs typically support many crypto-
graphic protocols, including the popular HTTPS (HTTP over SS-
L/TLS) which adds server authentication and message integrity to
HTTP data [27]. However HTTPS alone is typically not sufficient,
as the message integrity it provides can only be verified by a client
that connects to the server and engages in an interactive handshake
protocol. This client cannot, for example, produce a transcript of
what occurred and show it to a third party (e.g., a smart contract
on Ethereum) as proof that the message was not modified. To turn
HTTPS data into signed data (or something similar), a trusted third
party can vouch that the data is as received. TLS notary [103]
and DECO [116] offer solutions that attest for the authenticity of

130

https://www.ncdc.noaa.gov/

SoK: Oracles from the Ground Truth to Market Manipulation AFT ’21, September 26–28, 2021, Arlington, VA, USA

HTTPS data. Town Crier [115] uses Trusted Execution Environ-
ments (TEE) like Intel SGX [32] to push the trust assumption onto
TEE technology and, ultimately, the chip manufacturer.

4.3.2 Confidentiality. For many smart contracts that rely on ora-
cles, the final data is made transparent (e.g., prices, weather, event
outcomes). In a few cases, oracles feed data that is private (e.g.,
identities, supply chain information) and the contract enforces an
access structure of which entities under which circumstances can
access it [75].

Confidentiality might also be temporary. Given the fact that in-
formation submitted to the mempool is public, there is a natural risk
on the oracle system that a data feeder uses another data feeder’s
information to self-report to the system. This form of collusion
between data feeders is called mirroring attack [41] in computer
security literature. The data feeders are willing to freeload another
data feeder’s response to minimize their cost of data provision.
They will also be confident that their data will not be an outlier and
be penalized. To mitigate the risk of mirroring attacks, the oracle
designer should consider mechanisms that ensure the confidential-
ity of the data sent by the data feeders. A popular technique to
achieve confidentiality is to use a commitment scheme [15]. In a
commitment scheme, each data feeder should send a commitment
of the plain data as an encrypted message to the receiver. Later, the
sender can reveal the original plain data and verify its authenticity
using the commitment.

4.3.3 Non-Repudiation. A non-repudiation mechanism assures
that a party cannot deny the sender’s proposal after being sub-
mitted to the system. Oracle systems might rely on cryptographic
signature schemes to eliminate the risk of in-transit corruption and
to create irrefutable evidence of the data being provided by a source,
for use in the dispute phase (Section 4.6) as needed.

4.4 Selection of Data Feeders
In order to ensure correct data is fed into the system, the design
must select legitimate data feeders and weed out less qualified
and malicious participants. In a non-adversarial environment, the
design might aggregate all the incoming data without any selection,
skipping this step.

The earliest designs for oracle systems, such as Oraclizeit [10]
and PriceGeth [44], were designed using just one single data feeder;
however, to improve data quality and the degree of decentralization,
more complex oracle systems such as ChainLink [41] involves se-
lecting qualified data feeders to aggregate an output that is expected
to be more representative of the ground truth.

This process can be categorized into two main types: centralized
and decentralized selection, with decentralized selection having
multiple approaches through voting and staking. Centralized selec-
tion and decentralized selection through voting, create an allowlist
of legitimate data feeders, in contrast to selecting based on the
algorithmic criteria in decentralized selection through staking.

4.4.1 Centralized (Allowlist) Selection. A centralized selection is a
permissioned approach where a centralized entity selects a number
of data feeders directly without the involvement of other partici-
pants in the network. A centralized selection is analogous to having
an allowlist for authorized data feeds (e.g., Maker Oracle V1 [74]).

Compared to a decentralized approach, centralized selection is fast
and direct. However the trust footprint on the central entity is
large: it must solely select legitimate data feeders and also have
high availability to update the allowlist as needed.

4.4.2 Decentralized (Allowlist) Selection through Voting. By decen-
tralizing the selection process, the goal is to distribute the trust
from a single entity to a collective decentralized governance. Vot-
ing distributes trust and provides a degree of robustness against
entities failing to participate, however it adds latency and intro-
duces the threat that an actor can accumulate voting rights to sway
the vote [72], or even to do distrust and destroy the system (e.g.,
Goldfinger attack [64]).

For instance, in Maker V2 oracle [74], the selection of the data
feeders is done through a decentralized governance process [54].
MKR4 token holders vote on the number of authorized data feeders
and who these data feeders can be [28].

Note that sometimes voting processes can provide the illusion of
decentralization while not being much different than a centralized
process in practice. To illustrate, consider a project with a gover-
nance token, in which most tokens are held by a few individuals
where the project leaders advocate for their preferences and there is
no established venue for dissenting opinions. If voters only inform
themselves from one source of information, that source becomes a
de facto centralized decision maker.

4.4.3 Decentralized Selection through Staking. Like voting, staking
attempts to utilize a token to align the incentives of the participants
with the current functioning of the system. Mechanically, it works
different: data feeders post collateral against the data they provide.
In the dispute phase 4.6, any malicious data feeders will be punished
by losing a portion or all of their collateral (called slashing). Even
without slashing, the collateral amount acts as a barrier to entry
for participants and rate-limits participant.

The stake can be both in token value and reputation of the data
feeder. As an example, in Chainlink [41] protocol has a reputa-
tion contract that keeps track of the accuracy of data reporting of
different feeders. The ExplicitStaking module in Chainlink 2.0
defines the number of Link tokens each oracle node must stake to
become a data feeder, while the service agreement of the Chainlink
oracle defines the circumstances in which a node’s stake will be
slashed [84]. Put together, the incentives for selected data feeders
to act honestly are avoiding reputational loss, avoiding loss of stake
and penalty fees, and maintaining good standing for future income.
In terms of selection, the data selection module forms a leaderboard,
based on collateral and reputation, to select the highest ranked data
feeders from all available feeders.

Another approach, introduced by ASTRAEA [3], uses a combina-
tion of game theory and collateralization between different actors
in the system (Voters and Certifiers) to achieve equilibrium on what
the final data should be.

A staking-based selection module avoids a central trusted third
party, but it can add latency for adding/remove data feeds and other
adjustments. It is also open to sybil attacks by design, while working
to ensure these attacks have a significant cost for the adversary.

4MakerDAO Governance Token

131

AFT ’21, September 26–28, 2021, Arlington, VA, USA Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark

Category Example No
Tru

ste
d T
hir
d P
art
y

Lo
w
lat
en
cy

Re
sili
en
t to

Sy
bil
At
tac
ks

Re
sili
en
t to

Ta
rge
tte
d D

oS
At
tac
ks

Inc
en
tiv
es
are

En
do
gen

ou
s

Centralized Maker V1 Oracle • •
Voting Maker V2 Oracle • •
Staking Chainlink, ASTRAEA • • ◦ • •

Table 1: Evaluation Framework on selection of data feeders. For details see Section 4.4.4

One challenge for designing a staking mechanism is setting a
high enough punishment (slashing) mechanism to thwart malicious
actions. Projects like UMA [104], another smart contract oracle
design, dynamically adjust staked collateral needed for each round
to ensure that Cost of Corruption (CoC) is higher than the projected
Profit from Corruption (PfC). Profit from Corruption is defined by
the data requester, in which UMA contracts require higher collateral
to finalize the data from the data feeders. It is also important that
participants are incentivized to file correct disputes—ones that will
ultimately lead to identifying misbehaviour. If disputes are filed
on-chain, the disputer will have to pay gas costs that need to be
ultimately reimbursed by the resolution process.

Decentralized selection is done by the holders of some scarce
token, typically a governance token specific to the oracle service.
The simplest decentralizedmechanism to hold a vote amongst token
holders, who are indirectly incentivized (we call this an exogenous
incentive) cast informed votes since they hold a token tied to the
success of the system (e.g., TruthCoin [99]). In a staking system,
token holders are directly incentivized (a endogenous incentive) to
vote ‘correctly’ (this remains to be defined but assume for now it
means they vote in a way that will not be disputed) by posting
some amount of their tokens as a fidelity bond. Stakers stand to
be rewarded with new tokens and/or penalized (collateral slashed)
depending on the performance of the data feeders they vote for.

Additionally a protocol could introduce a random selectionwithin
the data feeders to decrease the chance of sybil attacks. As an ex-
ample Band Protocol [89], choses a random validator from top 100
staked participants for their oracle system.

Another approach used by Tellor oracle [100] is a simple Proof
of Work (PoW) algorithm for each round of data. The first 5 miners
to submit their desired data alongside the solution to the mining
puzzle are selected as the data feeders of the round. The selection
is based on the hash power of each data feeder and randomness
nature of proof of work consensus.

4.4.4 Evaluation Framework on the selection of data feeders. To
compare designs for data feeder selection, we provide an evaluation
framework. The definition of each evaluation criteria (i.e., column
of the table) follows, specifying what it means to receive a full dot
(•), partial dot (◦) or to not receive a dot.

No Trusted Third Party. A selection process that is distributed or
decentralized among several equally-powerful entities earns a full dot
(•). A process that relies on a single entity for critical functions is not
awarded a dot.

The voting and staking processes are decentralized amongst
multiple token holders (•). As the name implies, the centralized
process uses a trusted third party (no dot).

Low Latency. A selection process that can move from proposal to
finality within a single transaction is awarded a full dot (•). A process
that requires multiple rounds of communication or communication
among several entities is not awarded a dot.

The centralized process can make selection decisions unilaterally
(•). The voting process involves a round of communication with
all of the participants (no dot). The staking process draws feeders
unilaterally from an established leaderboard (•).

Resilient to Sybil Attacks. A selection process that only allows
unique feeders to participate is awarded a full dot (•). The evaluation
does not consider what specific method is used to determine entities are
unique but assumes it works reasonably well (not strictly infallible).
A process that is open to multiple fake feeders controlled by the same
adversary is awarded a partial dot (◦) if each additional feeder created
by the adversary has a material financial cost. If there is no material
cost to creating additional fake feeders, the process receives no dot.

The centralized process manages an allowlist based on real world
reputations. We assume this reasonably prevents sybils (•). The
staking process admits sybils but deters them by requiring staked
tokens for each, which is costly (◦). The voting process does not
deter sybils from entering the election but relies instead on the
voting process to not select them (no dot).

Resilient to Targeted Denial of Service Attacks. A selection process
that only halts when multiple entities to go offline or fail is awarded
a full dot (•). If critical functionalities cannot be performed with the
failure of a single entity, but the basic selection process can proceed,
it is awarded a partial dot (◦). If the process can be fully halted by
the failure of a single entity, it is awarded no dot.

The voting and staking processes can proceed until enough hon-
est participants fail that a dishonest majority remains (•). By con-
trast, a failure with the central entity in a centralized process can
prevent critical functionalities, like updating the allowlist (◦).

132

SoK: Oracles from the Ground Truth to Market Manipulation AFT ’21, September 26–28, 2021, Arlington, VA, USA

Incentives are Endogenous. Every selection process should have the
ability to remove untruthful feeders. Some selection processes might
go beyond this and incentivize feeders to provide truthful information.
Processes are awarded a full dot (•) if the awards/punishments can be
realized by the selection process itself. If the selection process relies only
on external incentives (e.g., damage to reputation), it is awarded no
dot. The evaluation does not consider how information is determined
to be truthful or not. Endogenous means the design is simpler but does
not imply it is more secure (cf. [50]).

The staking process requires feeders to post collateral that can
be taken (i.e., slashed) for malicious behavior (•). Centralized and
voting processes do not use internal incentives (no dot).

4.5 Aggregation of Data Feeds
Aggregation is the process of synthesizing the selected data feeds
into one single output. The quality of the output depends on the data
feed selection (see Section 4.4) and the aggregation process used.
To highlight the importance of designing an aggregation method
correctly, consider the case of Synthetix, a trading platform [98] that
used the average (or mean) of two data feeders as their aggregation
method. An attacker leveraged this to manipulate one of the two
feeders by inflating the real price by 1000x. Mean aggregation is
highly sensitive to outlier data and the attack resulted in Synthetix’s
loss of several million dollars [97].

4.5.1 Statistical Measures. The three core statistics for aggregation
are mean, median and mode. Many oracle systems use the median
as the aggregated output, by selecting the middle entry of a list
of ordinal data inputs. Unlike the mean, the median is not skewed
by outliers, although it assumes the inputs have an appropriate
statistical distribution where the median is a representative statistic
for the underlying ground-truth value. For example, if we believe
data from the feeders is normally distributed with possible outliers,
the median is appropriate. However if we believe it is bi-modally
distributed, then discretizing and computing the mode (most com-
mon value) of the data is more appropriate. The mode is useful
for non-numeric data (and nominal numbers). An approximation
to the mode is picking a data input at random, however access
to randomness from a smart contract is a well-documented chal-
lenge [18, 21, 23]. Oracle projects like Chainlink do not prescribe a
fixed aggregation method and let the data requesters select one.

To improve the quality of simple statistics such as the median
and the mode, weights can be applied in the calculation. For in-
stance, to mitigate manipulation of price data, one can choose to
use time-weighted average price (TWAP) [105], or liquidity volume,
or both [2]. Typically, the liquidity and trading volume of a market
correlates with the quality of the price data. To illustrate, Uniswap
V2 uses TWAP over several blocks (e.g., mean price in the last
10 blocks) to reduce the possibility of market manipulation in a
single block (e.g., via flash loans [90]). In Uniswap V3, TWAP is
optimized for more detailed queries including the liquidity volume
and allowing users to compute the geometric mean TWAP [2].

4.5.2 Stale Data. Some use cases require frequent updates to data,
such as weather data and asset prices. Stale data can be seen as valid
data and pass the selection criteria, but it will reduce the aggregated
data quality. Projects like Chainlink rank feeders based on historic

timeliness. A naive approach ignores this issue and always uses
the last submitted data of a data feeder even if the data feeder has
not updated its price for some specific period. This approach is
problematic if the underlying data is expected to change frequently.
An example occurred on Black Thursday 2020 [108] to MakerDao
when Maker’s data feeders could not update their feeds because
of very high network congestion. After a significant delay in time,
feeds were updated. The price had shifted by a large amount and
the reported data jumped, leading to sudden, massive liquidations
that were not adequately auctioned off.

4.6 Dispute Phase
The dispute phase is used to safeguard the quality of the final output
and give the stakeholders a chance to mitigate inclusion of wrong
data. Dispute resolution can be an independent module after the
aggregation phase or it can be implemented at any other oracle
module (e.g., at the end of every aggregation 4.5 or data feeder selec-
tion 4.4). Most oracle systems do dispute resolution internally, but
market specialization has produced firms that provide outsourced
dispute resolution as service (e.g., Kleros [68]). To systemize the
landscape, we first distinguish between systems that aim to detect
(and remove) bad data providers and systems that vet the data itself.
We then iterate how data is determined to be valid or invalid for
the purposes of a dispute. Finally, we illustrate the consequences of
a successful dispute: what happens to the disputed data and what
happens to its provider.

4.6.1 Provider-level and Data-level Vetting. Dispute resolution can
be provider-oriented or data-oriented. Under a provider-oriented
regime, the focus is on selecting honest data providers and using
disputes to remove data providers from serving as oracles in the fu-
ture. In the optimistic case that providers are honest, oracle data is
available immediately, however if an honest provider is corrupted, it
will have a window of opportunity to provide malicious data before
being excluded. One illustration of a provider-oriented system is
operating a centralized allowlist of data providers (e.g., MakerDAO
v2) where providers can be removed. Chainlink [41] strives to de-
centralize this functionality, where a reputation-based leaderboard
replaces the allowlist.

In a data-oriented regime, the focus is vetting the data itself.
This can result in a slower system as oracle data is staged for a
dispute period before it is finalized, however it can also correct
false data (not merely remove the corrupted data feeder from future
submissions). One illustration of a data-oriented system is Tellor [31,
100], where data is staged for 24 hours before finalization. If it
is disputed, a period of up to 7 days is implemented to resolve
the dispute. It is also possible that a system allows the resolution
itself to be further disputed with one or more additional rounds. In
Augur [87] for instance, the dispute step may happen in one round
(takes maximum 1 day) or may contain other rounds of disputes
that can last more than 7 days.

4.6.2 Determining the Truth. In the optimistic case, an oracle sys-
tem will feed and finalize truthful data, while disputes enable re-
course for incorrect data. However disputes also introduce the
possibility of two types of errors.

133

AFT ’21, September 26–28, 2021, Arlington, VA, USA Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark

No Disputes Disputed
Data is correct Correct False Positive
Data is incorrect False Negative Correct

Dispute resolution in oracle systems focus on false positives.
Incentivizing the discovery of false positives is present in some
staking-based systems, however false negatives are not otherwise
dealt with. In order to resolve a false positive, correct data must
be used as a reference but, of course, if correct data is available
as a reference, then it could replace the entire oracle system. That
leaves two reasons for why an oracle systemmight still exist: (a) the
reference for correct data is too expensive to consult on a regular
basis, or (b) there is no reference for correct data and it must be
approximated.

If feeders are placed on an allowlist by a trusted party, disputes
could be filed with the trusted party and manually verified. As far as
we know, this is the only example of (a), although (a) is the basis for
other blockchain-based dispute resolution protocols like optimistic
roll-ups [62]. The rest of the truth discovery mechanisms are based
on (b) approximating the truth.

A statistical approach is selecting, from a set of values proposed
by different feeders, the median of the values (e.g., appropriately
distributed continuous numerical data) or the mode (e.g., non-
continuous or non-numerical data). It is possible to augment this
approach by having feeders stake collateral in some cryptocurrency
(e.g., a governance token for the oracle project), and this collateral
is taken (slashed) from the feeder if their data deviates from the
median by some threshold. If the amount slashed is payed, in part
or in full, to the entity that filed and/or supported a dispute on the
data, this incentivizes feeders to help reduce false negative errors
in addition to false positives. One challenge is setting an accept-
able threshold for slashing. A large threshold tolerates moderately
incorrect data without punishment, while a small threshold could
punish data feeders that are generally honest but faulty, slow, or
reporting on highly volatile data.

If a governance token exists for the oracle project, a related ap-
proach is to introduce voting on disputed data by any token holder,
and not limit the decision to just the feeders. In Augur [87] and AS-
TRAEA [3], disputers vote to change the tentative outcome because
they believe that outcome is false. Voting occurs over a window of
time which extends the time to resolve disputes. By comparison,
statistical mechanisms can be applied automatically and nearly
instantly after the data is aggregated. However voting incorpo-
rates human judgement which might produce better outcomes in
nuanced situations.

One final truth discovery mechanism is arbitrage which is ap-
plicable in the narrow category of exchange rates between two
on-chain tokens. This can be illustrated by the NEST oracle [81]
where data feeders assert the correct exchange rate between two
tokens by offering a minimum amount of both tokens at this rate
(e.g., 10 ETH and 39,000 USDT for a rate of ETH/USDT = 3900). If
the rate is incorrect, other participants will be given an arbitrage
opportunity to buy/sell ETH at this rate, an action that can correct
the price. This is very similar to drawing a price from an on-chain
exchange, like Uniswap, and suffers from he same issue: an adver-
sary can manipulate the oracle price by spending money. It is secure
when the Cost of Corruption (CoC) is greater than the Profit from
Corruption (PfC), however PfC can never be adequately accounted

for because profit can come from extraneous (extra-Ethereum) fac-
tors [50]. The UMA [65] oracle system has data feeders provide
their own PfC estimates for the data they provide.

4.6.3 Consequences for Incorrect Data. We now consider the conse-
quences for disputed data that has been determined to be incorrect.
In provider-oriented dispute resolution, incorrect data has conse-
quences for the data feeder (see next subsection) but not the data
itself. By the time the dispute is resolved, it is too late to change the
data itself.

In data-oriented dispute resolution, data that has been deemed
incorrect can either be reverted or corrected. Reversion means the
outcome result will be annulled and the system should start from
scratch to obtain new data, while corrected data will reflect a new
undisputed value. The difference between the two is essentially in
the complexity of the dispute resolution system. For reversion, a
collective decision is taken to accept or reject data — a binary option
that is known in advanced. By contrast, correcting data requires
new data to be proposed and then a collective decision to be made
on all the proposals which is more complex but does not avoids
rerunning the oracle workflow.

These differences also impact finality: when should oracle data
be considered usable? Dispute periods, re-running the workflow,
and allowing resolved disputes to be further disputed can all intro-
duce delays. To illustrate, consider Augur [87] which implements a
prediction market on binary events. Any observer with an objection
to a tentative outcome can start a dispute round by staking REP
(Augur’s native token) on the opposite outcome. Dispute windows
are 24 hours and then extended to 7 days for disputes on disputes. If
the total staked amount exceeds 2.5% of all REP tokens, the market
enters a 60-day settlement phase called a fork window when all
REP holders are obliged to stake on the final outcome.

4.6.4 Consequences for Data Feeder. If data has been deemed in-
correct through disputes or rejected for being an outlier, the feeder
who provided the data might face consequences like being banned,
slashed, or suffering reputational loss. It is also possible that there
is no consequence for the feeder other than the data being discarded.
For example, in a sensor network, results from faulty sensors could
have their data filtered out but continue to contribute data in ex-
pectation that they will be repaired in the future.

In oracle designs based on allowlists, a feeder could be banned
or temporarily suspended for providing incorrect data. For dispute
resolution based on staking, a feed could suffer economic loss by
having their stake taken from them. It is important to reiterate
that this economic loss does not necessarily outweigh the utility of
attempting to corrupt oracle data. The profit from corruption de-
pends on where the data is being used, which could be within larger
system than the blockchain itself [50]. Finally, a feeder might suffer
reputational loss for providing incorrect data. One can imagine this
would be the case if, for example, the Associated Press misreported
the outcome of the 2020 US Presidential election after announcing
that it would serve as an oracle for this event on Ethereum.

Another illustration of these options is Chainlink, which main-
tains a decentralized analogue to a leaderboard where feeders are
ranked according to the amount of LINK (Chainlink’s token) they
stake, as well as their past behavior in providing data that is timely
and found to be correct. Data feeders with the outlier data will be

134

SoK: Oracles from the Ground Truth to Market Manipulation AFT ’21, September 26–28, 2021, Arlington, VA, USA

punished by losing their collateralized LINK tokens and reducing
their reputation score on the reputation registry. The lost of tokens
is a direct cost, while the loss of reputation could impact their future
revenue.

4.7 Classification of Current Oracle Projects
In Table 2, we present a classification of several oracle implementa-
tions using the modular framework described in this section. This
table showcases a wide variety of approaches, as well as some
specialization on specific modules (e.g., TownCrier and Deco on
data source and Kleros on dispute resolution). We caution that
blockchain projects can change how they work very quickly, new
projects will emerge, and current projects will be abandoned. Ta-
ble 2 has a limited shelf-life of usefulness, however the workflow
itself (modules, sub-modules, and design choices) is based on gen-
eral principles and intended to have long-lasting usefulness.

5 INTERACTINGWITH THE BLOCKCHAIN
While the initial inputs to an oracle are generally off-chain (with the
exception of pulling data from another smart contract) and the final
output is by definition on-chain, the oracle designer will choose
to implement the intermediary modules—data feeder selection, ag-
gregation and dispute resolution—as either off-chain or on-chain.
Generally, on-chain modules are preferred for transparency and
immutability, while off-chain modules are preferred for lower costs
and greater scalability.

To illustrate, Chainlink and NEST Protocols were ranked #5
and #7 respectively in gas usage among all DApps on Ethereum.5
This ranking was achieved mainly because they implement all
modules fully on-chain. Later, Chainlink implemented an off-chain
reporting (OCR) protocol [17] with the goal of reducing the gas costs
associated with on-chain transactions. This protocol uses digital
signatures to authenticate feeders and a standard (e.g., Byzantine
fault tolerant [20]) consensus protocol between Chainlink nodes.

At some point, an oracle system must move on-chain and start
interacting with the underlying blockchain. We assume for the
purpose of illustration that Ethereum is the blockchain being used.
Data flow from an off-chain module to a smart contract involves
the following three components which we detail in this section.

5.1 Off-chain Infrastructure: Assuming at least one module
is off-chain, an infrastructure is required to monitor requests
for oracle data from the blockchain, gather the data from the
data sources, implement a communication network between
data feeders, and create a final transaction to be sent to the
blockchain infrastructure.

5.2 Blockchain Infrastructure: Off-chain infrastructure will
pass the data as a transaction to blockchain nodes, which
relay transactions and use a consensus algorithm agree on
new blocks. The nodes run by miners are discussed in partic-
ular as they dictate the order of transactions in every block
they mine.

5.3 Smart Contracts: The transaction triggers a state change
in a smart contract on the blockchain, typically a contract

5Based on Huobi DeFiLabs Insight on September 2020 [61]

owned by the oracle which is accessible from all other con-
tracts. Alternatively, the oracle could write directly into a
data consumer’s contract (called a callback).

5.1 Off-chain Infrastructure
Depending on the oracle design, there can be different types of
off-chain infrastructure. If financial data is pulled from Uniswap’s
oracle [105], there is no off-chain infrastructure needed because
the oracle is already a fully on-chain oracle. For other applications,
off-chain infrastructure could consist of a single server (e.g., Town-
Crier [115]) or many nodes that intercommunicate through their
own consensus protocol (e.g., Chainlink OCR [17]). Availability and
DOS-resistance [96] are core requirements of off-chain infrastruc-
ture, specially in oracle systems working with time-sensitive data
and high update frequency. In this section we describe different
possible components of the off-chain infrastructure.

5.1.1 Monitoring the Blockchain. For oracles that are capable of
returning a custom data request made on-chain (called request-
response oracles), every data feeder needs to monitor the oracle’s
smart contract for data requests. The common implementation
consists of a server subscribing to a blockchain node for specific
events.

5.1.2 Connection to Data Source. The data feeder requires a con-
nection to the data source 4.2 to fetch the desired data. This con-
nection can be an entry point for an adversary to manipulate the
data however it is possible to mitigate this issue by integrating mes-
sage authentication (recall source authentication in Section 4.3.1).
Examples include relaying HTTPS data (e.g., Provable [10] via
TLSNotary [103]) or from trusted hardware enclaves (e.g., Town-
Crier [115] via Intel SGX [32]). Vulnerabilities with the web-server
or SGX itself [16] are still possible attack vectors.

5.1.3 Data Feeders Network. In order to increase the scalability
of the oracle network, multiple data feeders might aggregate their
data off-chain (e.g., Chainlink OCR [17]). In OCR, a leader is chosen
from the participants to gather signed data points from other nodes.
Once consensus is achieved on the aggregated set of data, the
finalized data, accompanied by the signatures, is transmitted to the
blockchain node. This reduces the costs as only one transaction is
sent to the blockchain, while maintaining similar security as having
each chainlink nodes send the data themselves.

Like any network system, availability is essential to the operation
of the oracle. To illustrate, in December 2020, MakerDAO’s oracle
V2 had an outage due to a bug in their peer-to-peer data feeder
network stack [51]. We do not summarize all the literature on peer-
to-peer network attacks, but denial-of-service attacks [110] and
sybil-attacks [40] are critical to mitigate to ensure the availability
of the network and the oracle.

5.1.4 Transaction Creation. In order to submit data to a blockchain,
the data feeder is required to construct a valid blockchain trans-
action that includes the requested data. This transaction must be
signed with the data feeder’s private key to be validated and au-
thenticated on-chain. The data feeders must protect the signing
keys from theft and loss [43], as this key can be used to impersonate
the oracle.

135

AFT ’21, September 26–28, 2021, Arlington, VA, USA Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark

Da
ta
So
urc
e

Sel
ect
ion

Me
cha

nis
m

Sta
kin
g

Ag
gre
gat
ion

Me
cha

nis
m

Pro
vid
er/
Da
ta
Ve
ttin

g

De
ter
mi
nin
g t
he
Tru

th

Co
nse
qu
en
ces

(Sl
ash
, B
an
, L
oss
)

Oracle Data Feeder Dispute

ChainLink [41] API Reputation,
Staking • Statistical

Measure P Statistical
Measure S

UMA [104] Human, API FCFS† • × D Staking S

Augur [87] Human Single
Source★ • × D Voting S

Uniswap [105] Smart Contract × × TWAP × × ×

MakerDAO V1 [74] Human, API Centralized
Allowlist × Median × × ×

MakerDAO V2 [74] Human, API Decentralized
Allowlist × Median P Voting B

NEST [81] Human × • ×★★ D Arbitrage L

Band protocol [89] API Random
Selection • Statistical

Measure P Staking S

Tellor [31] Human, API PoW • Median P Staking S
B

ASTRAEA [3]
TruthCoin [99] Human Staking • Mode D Voting S

Provable [10]
PriceGeth [44] API × × × × × ×

DIA Oracle [38] API,
Smart Contract × × × D Staking B

DECO [116]
TownCrier [115] HTTPS × × × × × ×

API3 [9] \w Kleros [68] Oracles Decentralized
Allowlist • Statistical

Measure P Voting S
B

Table 2: A classification of the existing oracle implementations using the modular framework described in Section 4.
• indicates the properties (columns) are implemented in the corresponding oracle (rows), and × indicates the property is not applicable.
† First Come First Serve★The Market Creator assigns the designated reporter ★★The series of reported prices will be sent to requester without aggregation (See 4.6.1)

Transactions compete for inclusion in the next block by offering
different levels of transaction fees, known as the gas fee in Ethereum.
In time-sensitive oracle applications, the relay must specify an
appropriate amount of gas according to market conditions. For
instance, on ‘Black Thursday’ in March 2020 [108], the Ethereum
network was congested by high fee transactions and some oracles
failed to adjust their price feed. Tomitigate this problem, themodule
which is responsible for creating the final transaction must have a
dynamic gas mechanism for situations where gas prices are rapidly
climbing. In this case, pending transactions must be canceled, and
new ones must be generated with higher gas price, which may take
a few iterations to get in. Dynamic fees depend directly on the
network state and require a connection to the blockchain node to
estimate the adequate gas price.

In addition, the data feeder’s sending address on the blockchain
must have sufficient funds to be able to pay the estimated gas
price. It is crucial for the availability of the oracle that the data

feeders monitor their account balance as spam attacks might drain
their reserves with high gas fees, as happened to nine Chainlink
operators in September 2020 [33].

5.2 Blockchain Infrastructure
In this section, we discuss the blockchain infrastructure that is
required by any entity interacting with the blockchain. While this
infrastructure is not specific to oracles, we illustrate key points that
can impact oracle availability.

5.2.1 Blockchain Node. A blockchain node relays transactions to
the other nodes in the network for inclusion in the blockchain. The
node is responsible for storing, verifying, and syncing blockchain
data. The availability of nodes is very important for the oracle
system, as a blocked node cannot send transactions. Extensive
research on network partitioning attacks apply to decentralized
networks, with the main objective of surrounding an honest nodes

136

SoK: Oracles from the Ground Truth to Market Manipulation AFT ’21, September 26–28, 2021, Arlington, VA, USA

with the malicious nodes [57, 58, 82, 106, 117]. This results in the
node believing it is connected to the blockchain network when it is
not.

5.2.2 Block Creation. Transactions that have been circulated to
the blockchain network are stored in each node’s mempool. Mining
nodes select transactions from their mempool according to their
priorities (e.g., by highest gas price as in Geth [46], while respecting
nonces). Front-running attacks [35, 45] try to manipulate how min-
ers sequence transactions. For example, someone might observe an
unconfirmed oracle transaction in the mempool, craft a transaction
that profits from knowing what the oracle data will be, and attempt
to have this transaction confirmed before the oracle transaction
itself (called an insertion attack [45]). This might be conducted by
the miner themself. In this case, it is called transaction reordering,
and the profit miners stand to make from doing this is termed
Miner Extractable Value (MEV) [35]). Other nodes or users on the
network who can act quickly and offer high fees can also conduct
front-running attacks. Users might also attempt a bulk displacement
attack [45] that fills the consecutive blocks completely to delay
reported data from oracles. There could be a profit motive for this
attack if the oracle data becomes expired, or if the data feeder’s
collateral is slashed and redistributed to the attacker.

Research on MEV (e.g., Flashbots [49]) has shown the possibil-
ity of new type of attacks based on reordering the transactions,
such that if there’s a high profit for changing the order of some
transactions in a (few) blocks, miner is incentivize to use his hash
rate to perform a reorganization attack6 [69], and profit from the
execution of the newly ordered transactions. For instance, Uniswap
uses the last price in a block to determine the average price (TWAP),
in which a miner can add new trades while reordering the past
trades with the goal of manipulating the price average to profit on
other applications that uses Uniswap as price oracle.

5.2.3 Consensus. The goal of the consensus algorithm used in the
blockchain is to verify and append the next block of transactions
to the blockchain. If the nodes do not come to agreement on a state
change, a fork in the network happens with different nodes trying
to finalize different forks of the blockchain. Given the network is
decentralized, short-lived forks happens frequently in the network
that generally are resolved within a few blocks [83]. All valid trans-
actions in the abandoned fork will eventually be mined in the main
chain, likely in a new order (called reorganization or a reorg).

A reorg opens the possibility of attacks by using known, uncon-
firmed, transactions from the abandoned fork. To illustrate, consider
Etheroll [47], an on-chain gambling game where users bet by send-
ing a number that payouts if it is smaller than a random number
determined by an oracle. To prevent front-running from the mem-
pool, the Etheroll oracle would only respond when a bet was in
a block. Despite this mitigation, in April 2020, the Etheroll team
detected an ongoing front-running attack on their platform [42].
The attacker was betting rigorously and waiting for small forks—
collected by Ethereum in uncle blocks—where the original bet and
oracle’s random number response were temporarily discarded by
the reorg. The attacker would place a winning bet with a high fee
to front-run the original bet and eventual inclusion of the oracle’s

6Also referred to as Time-bandit attacks [35]

transaction in the reorganized chain. A general principle of this
attack is that even if oracle data bypasses the mempool and is in-
corporated directly by miners, front-running through reorgs is still
possible.

There are two solutions to front-running through reorgs. The
first is to delay the settlement of the bet by a few blocks to prevent
issues caused by small reorganization forks. The second is to in-
corporate a hash of the request (e.g., request-id) in the response to
prevents the request (e.g., bet) from being swapped out once the
response (e.g., random number) is known.

Other consensus attacks [12, 53, 58] exist but are less related to
oracles. We omit discussion of them.

5.3 Smart Contracts
Although oracles are usually designed to be the source of truth for
on-chain smart contracts, some smart contracts can also be used
as oracles by others even though they were not designed with the
oracle use-case in mind. To expand this idea, oracles could be a ’an
end in itself’, which is to say they are designed specifically to be
used as a source of truth. These oracles fetch the data from external
sources(4.2) and make it available on-chain (e.g., PriceGeth [44]).

By contrast, a means to an end oracle is a contract that produces
useful data as a byproduct of what it is otherwise doing. Exam-
ples are on-chain markets and exchanges like Uniswap and other
automated market makers (AMMs). The markets are designed for
facilitating trades but provide pricing information (price discovery)
that can be used by other contracts (e.g., margin trading platforms)
as their source of truth.

In this section we dive deeper in the relationship between the
oracle’s smart contract and the data consumer smart contract. We
start by defining possible interaction models, and then discuss
specific issues related to the oracle’s contract and the consumer’s
contract.

5.3.1 Oracle Interaction Models. A distinction in the oracle design
is whether the interaction between with the consumer’s contract is
implemented as a feed, a request-response, or the related subscribe-
response.

A Feed is a smart contract system that publishes the data for
others to use. It does not require any requests to fetch the data and
using an interval to update the data on its smart contract (e.g.,Maker
DAO Oracle [74]). From a technical aspect, in order to use a feed
oracle, the data consumer smart contract only needs to query the
oracle’s smart contract and no additional transactions are needed.

The Request-Response model is similar to a client-server API
request on traditional web development. The requester must send
a request to the oracle’s smart contract, which then is picked up
by the off-chain module of the oracle to fetch the requested data
from the data source. The data is then encapsulated in a transaction
and sent back to the data requester smart contract through the
oracle’s smart contract. Due to the nature of this design, at least
two transactions are needed to complete the work flow, one from
the requester and another for the responder.

The Subscribe-Response model is similar to Request-Response
with one main difference, the request does not need to be in a
transaction. If there is pre-arranged agreement, the oracle will
watch for emitted events from the requester smart contract and

137

AFT ’21, September 26–28, 2021, Arlington, VA, USA Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark

respond to the requests. Alternatively, the requester is allowed to
read the feed through an off-chain agreement (e.g., API3 [9]).

5.3.2 Oracle’s Smart Contract. In the oracle designs that implement
some of the modules on-chain, the oracle’s smart contract could
include data feeder selection (Section 4.4), aggregation (Section 4.5),
and dispute resolution (Section 4.6). In addition to these modules,
the oracle’s smart contract can be used as the data feed storage for
other smart contracts to read from, or to authenticate the oracle’s
response on the consumer smart contract. In the feed model, the
oracle’s smart contract is where the consumer fetches the oracle
data from. In the Request-Response model, the data consumer smart
contract (defined below in Section 5.3.3) requires knowledge of
the oracle’s smart contract’s address in advance, for the initial
request and also verification of the oracle’s response. For the rest of
this section, we discussion potential attacks on the oracle’s smart
contract.

Implementation Flaws. There are many known smart contract
vulnerabilities that have been extensively discussed [24, 30] and
possibly could affect the legitimacy of the oracle system.

In many DeFi projects, a common design pattern is to use on-
chain markets, such as Uniswap, for the price oracle, however, these
systems were not designed to be used as oracles and are prone to
market manipulation. The end result is that currently, the most
prevalent attack vector in DeFi is oracle manipulation [34]. To
illustrate this attack, consider the lending (and margin trading)
platform bZx. It fetched prices from KyberSwap, a decentralized
exchange, to calculate the amount of collateral of one cryptoasset is
needed to back the loan of a different asset. In one attack on bZx [85],
the attacker used a flash loan to manipulate KyberSwap’s sUSD/ETH
exchange rate. The attacker then borrowed ETH with insufficient
collateral because the bZx contract believed the collateralized sUSD
was worth much more than it actually was. When the attacker
absconded with the borrowed ETH, forgoing its collateral, and then
unwound its other positions and repaid the flash loan, it profited
at bZx’s expense. Arguably bZx (the data consumer) is the flawed
contract but the ease in which KyberSwap (the oracle contract)
could be manipulated was not well understood at the time either.
In reaction, decentralized exchanges embraced their role as a price
oracle and hardened themselves against price manipulation by
using aggregation methods like the Time-Weighted Average Price
(TWAP) (described in Section 4.5).

Governance. In order to remove the centralization of control in
many DeFi projects, a governance model is introduced that uses a
native token for voting and staking. The governance model for an
oracle could propose, vote, and finalize changes to system variables
like the approved data feeders on the oracle’s allowlist or various
fees.

While a decentralized governance model removes the trust in
a central entity, it does not remove the possibility of a wealthy
entity (a whale) taking control of the system by accumulating (or
borrowing [90]) enough tokens to pass their proposals. In addition,
logical issues in the governance implementation could result in
tricking the voters into approving a proposal that has malicious
consequences [80].

As an example, in the MakerDAO platform, MKR token holders
can vote to change parameters related toMaker’s oraclemodule [74].
An attacker in October 2020, used a flash loan to borrow enough
MKR tokens to pass a governance proposal, aimed to change the list
of consumer smart contracts and obtain read access to the Maker’s
oracle [72]. It could be more dangerous if the attacker planed to
change the other parameters of the oracle such as Whitelisted data
feeders or bar parameter : the sufficient number of data feeders for
data feeder selection module. Potentially an attacker may pay a
bribe to the MKR holders to buy their votes, or use a Decentralized
Autonomous Organization (DAO) to pay for the votes without having
ownership of the tokens [36].

5.3.3 Data Consumer Smart Contract. The final point in the oracle
workflow is the smart contract that needs the data for its business
logic. Aside from any possible code vulnerabilities in this smart
contract, there are common implementation patterns concerning
the oracle workflow.

In the feed model, the data consumer smart contract relies on
oracles to fetch the required data in order to function as intended.
It is essential to use oracles with multiple data feeders and a proper
aggregation methods. To illustrate the importance, consider the
lending service Compound [29] which initially only used Coinbase
Pro as their data feeder without any aggregation mechanisms [37].
In November 2020, a faulty price feed on Coinbase Pro, resulted
in undercollarization of Compound loans and a liquidation of $89
million dollars of the collateral. This could have been prevented by
using an oracle with sufficient data feeders and a proper aggregation
mechanism.

Due to the commonality of this issue, there has been some
Ethereum Improvement Proposals (EIPs) to standardize the in-
terface of the oracles implementing a feed (e.g., EIP-2362 [101]).
An interface would allow data consumer smart contracts to easily
switch between feeds or use multiple oracle feeds in their logic.

In the request-response model, the data consumer smart contract
sends a request for specific data to the oracle’s smart contract. In
some projects this request contains more information like the data
feeder selection method, aggregation algorithm and parameters
for dispute phase (e.g., Service Level Agreement in Chainlink). It is
crucial that the data consumer smart contract, verifies the authen-
ticity of the oracle response. Failure to verify the oracle’s response
could result in malicious data injection in the data consumer smart
contract. To illustrate, the insurance service Nexus Mutual [80]
implemented an oracle’s response function (or callback) without
any proper access control. This opened the possibility of unautho-
rized entities providing data updates which would be wrongfully
assumed to have originated from the oracle’s smart contract.

6 CONCLUDING REMARKS
In this paper, we described a specialized modular framework to
analyze oracles. After our systematization, we present the following
discussion points and lessons learned from our work.

(1) Many oracles projects introduce their own governance to-
kens that are used to secure the oracle system (e.g., through
staking). Two conditions seem necessary: the market capital-
ization of the token stays material and the token is evenly dis-
tributed. More consideration should be given to leveraging

138

SoK: Oracles from the Ground Truth to Market Manipulation AFT ’21, September 26–28, 2021, Arlington, VA, USA

an existing token with these properties (even a non-oracle
token) instead of creating new specialized tokens [19]. Also
a collapse in the value of the governance token threatens the
entire system.

(2) Oracle systems with on-chain modules are expensive to
run on public blockchains like Ethereum, which prices out
certain use-cases that consume a lot of oracle data but do
not generate proportional amount of revenue (e.g., Weather
data).

(3) Diversity in software promotes resilience in the system. If
the oracle market coalesces behind a single project, a failure
within this project could cause cascading failures across DeFi
and other blockchain applications.

(4) While determining the profit from corrupting the oracle is a
promising approach to thwarting manipulation (by ensuring
the cost of corruption is greater), one can never capture the
full extent of the potential profit. Attackers can profit outside
of Ethereum by attacking oracles on Ethereum [50].

In summary of this paper, the framework we present facilitates
a modular approach in evaluating the security of any oracle design
and its associated components that exist today or to be implemented
in the future. As an example, the level of centralization can be mea-
sured using choke points such as aggregation 4.5, or how the data is
proceeded to the blockchain 5.1. In order to design a secure oracle,
all modules must be rigorously stress tested to make sure it cannot
be gamed by participants or malicious actors. In addition, many
security auditors and analysis tools are specialized in detecting
oracle-related attacks through code review of the smart contracts.
Specially with the rise of DeFi smart contracts, the importance
of a secure oracle system remain a paramount component of the
decentralized blockchain ecosystem.

ACKNOWLEDGMENTS
J. Clark acknowledges support for this research project from (i) The
Chaire Fintech: AMF – Finance Montréal, (ii) National Sciences and
Engineering Research Council (NSERC) through the NSERC, Ray-
mond Chabot Grant Thornton, and Catallaxy Industrial Research
Chair in Blockchain Technologies (https://www.nserc-crsng.gc.ca/
Chairholders-TitulairesDeChaire/Chairholder-Titulaire_eng.asp?pid=
1045), and (iii) an NSERC Discovery Grant .

REFERENCES
[1] Hayden Adams. 2019. Uniswap. URl: https://uniswap.org/docs (2019).
[2] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-

son. 2021. Uniswap v3 Core. (2021).
[3] John Adler, Ryan Berryhill, Andreas Veneris, Zissis Poulos, Neil Veira, and

Anastasia Kastania. 2018. Astraea: A decentralized blockchain oracle. In 2018
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 1145–1152.

[4] Hamda Al-Breiki, Muhammad Habib Ur Rehman, Khaled Salah, and Davor
Svetinovic. 2020. Trustworthy Blockchain Oracles: Review, Comparison, and
Open Research Challenges. IEEE Access 8 (2020), 85675–85685.

[5] Mojtaba Alizadeh, Mazdak Zamani, Ali Rafiei Shahemabad, Jafar Shayan, and
Ahmad Azarnik. 2012. A survey on attacks in RFID networks. Open International
Journal of Informatics (OIJI) 1, 1 (2012), 15–24.

[6] Guillermo Angeris and Tarun Chitra. 2020. Improved Price Oracles: Constant
Function Market Makers. arXiv preprint arXiv:2003.10001 (2020).

[7] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks
on ethereum smart contracts (sok). In International conference on principles of
security and trust. Springer, 164–186.

[8] Balancer. 2020. A protocol for programmable liquidity. URl:
https://balancer.finance/ (2020).

[9] Burak Benligiray, Saša Milic, and Heikki Vänttinen. [n.d.]. Decentralized APIs
for Web 3.0. ([n. d.]).

[10] T Bernani. 2016. Oraclize. URl: https://www.oraclize.it/ (2016).
[11] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. 2017. Findel: Se-

cure derivative contracts for Ethereum. In International Conference on Financial
Cryptography and Data Security. Springer, 453–467.

[12] George Bissias, Brian Neil Levine, A Pinar Ozisik, and Gavin Andresen. 2016.
An analysis of attacks on blockchain consensus. arXiv preprint arXiv:1610.07985
(2016).

[13] Chainlink Blog. 2021. 16 Ways to Create Dynamic Non-Fungible Tokens (NFT)
Using Chainlink Oracles. URl: https://blog.chain.link/create-dynamic-nfts-using-
chainlink-oracles/ (2021).

[14] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable
Delay Functions. In Advances in Cryptology – CRYPTO 2018 (Lecture Notes in
Computer Science, Vol. 10991). Springer, 757–788. https://doi.org/10.1007/978-3-
319-96884-1_25

[15] Gilles Brassard, David Chaum, and Claude Crépeau. 1988. Minimum disclosure
proofs of knowledge. Journal of computer and system sciences 37, 2 (1988),
156–189.

[16] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure:{SGX} cache
attacks are practical. In 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17).

[17] Lorenz Breidenbach, Christian Cachin, Alex Coventry, Ari Juels, and
Andrew Miller. 2021. Chainlink Off-chain Reporting Protocol. URl:
https://blog.chain.link/off-chain-reporting-live-on-mainnet/ (2021).

[18] Benedikt Bünz, StevenGoldfeder, and Joseph Bonneau. 2017. Proofs-of-delay and
randomness beacons in ethereum. IEEE Security and Privacy on the blockchain
(IEEE S&B) (2017).

[19] Vitalik Buterin. 2021. UNI should become an oracle token. URl:
https://gov.uniswap.org/t/uni-should-become-an-oracle-token/11988 (2021).

[20] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002),
398–461.

[21] Chainlink. 2020. Chainlink VRF: On-chain Verifiable Randomness. URl:
https://blog.chain.link/verifiable-random-functions-vrf-random-number-
generation-rng-feature/ (2020).

[22] ChainLink. 2020. What is the Blockchain Oracle Problem. URl:
https://blog.chain.link/what-is-the-blockchain-oracle-problem/ (2020).

[23] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Arash Pourdamghani.
2019. Probabilistic smart contracts: Secure randomness on the blockchain. In
2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, 403–412.

[24] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A
Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses.
ACM Computing Surveys (CSUR) 53, 3 (2020), 1–43.

[25] Jeremy Clark, Joseph Bonneau, Edward W Felten, Joshua A Kroll, Andrew
Miller, and Arvind Narayanan. 2014. On decentralizing prediction markets and
order books. InWorkshop on the Economics of Information Security, State College,
Pennsylvania.

[26] Jeremy Clark, Didem Demirag, and Seyedehmahsa Moosavi. 2020. SoK: Demys-
tifying Stablecoins. CACM (2020).

[27] Jeremy Clark and Paul C Van Oorschot. 2013. SoK: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhancements. In 2013
IEEE Symposium on Security and Privacy. IEEE, 511–525.

[28] Coinmonk. 2019. Vulnerabilities in Maker: Oracle-Governance
Attacks, Attack DAOs, and (De)Centralization. URl:
https://medium.com/coinmonks/vulnerabilities-in-maker-oracle-governance-
attacks-attack-daos-and-de-centralization-d943685adc2f (2019).

[29] Compound. 2020. Open Price Feed. URl: https://compound.finance/docs/prices
(2020).

[30] Consensys. 2020. Ethereum Smart Contract Best Practices.
[31] Tellor Core. 2019. Staking, Disputes, and Voting. URl:

https://medium.com/tellor/staking-disputes-and-voting-ad09c66eb7bc/ (2019).
[32] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.

ePrint Arch. 2016, 86 (2016), 1–118.
[33] The Block Crypto. 2020. Chainlink nodes were targeted in

an attack last weekend that cost them at least 700 ETH. URl:
https://www.theblockcrypto.com/post/76986/chainlink-nodes-attack-eth (2020).

[34] The Block Crypto. 2021. DeFi attacks: the general picture. URl:
https://www.theblockcrypto.com/research/105472/defi-attacks-the-general-
picture (2021).

[35] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Ben-
tov, Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in
decentralized exchanges, miner extractable value, and consensus instability. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

139

https://www.nserc-crsng.gc.ca/Chairholders-TitulairesDeChaire/Chairholder-Titulaire_eng.asp?pid=1045
https://www.nserc-crsng.gc.ca/Chairholders-TitulairesDeChaire/Chairholder-Titulaire_eng.asp?pid=1045
https://www.nserc-crsng.gc.ca/Chairholders-TitulairesDeChaire/Chairholder-Titulaire_eng.asp?pid=1045
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25

AFT ’21, September 26–28, 2021, Arlington, VA, USA Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark

[36] Philip Daian, Tyler Kell, Ian Miers, and Ari Juels. 2018. On-Chain Vote Buying
and the Rise of Dark DAOs. URl: https://hackingdistributed.com/2018/07/02/on-
chain-vote-buying/ (2018).

[37] Decrypt. 2020. Oracle Exploit Sees $89 Million Liquidated on Com-
pound. URl: https://decrypt.co/49657/oracle-exploit-sees-100-million-liquidated-
on-compound (2020).

[38] DIA. 2020. DIA — Transparent Oracles for a Decentralised Financial Ecosystem.
[39] DODO. 2020. The DODO Advantage. URl:

https://dodoex.github.io/docs/docs/advantages (2020).
[40] John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer

systems. Springer, 251–260.
[41] Steve Ellis, Ari Juels, and Sergey Nazarov. 2017. Chainlink: A decentralized

oracle network. Retrieved March 11 (2017), 2018.
[42] Shayan Eskandari. 2020. EtherRoll Bug Thread. URl:

https://twitter.com/sbetamc/status/1263220679937265671 (2020).
[43] S Eskandari, D Barrera, E Stobert, and J Clark. 2015. A first look at the usability

of Bitcoin key management. In USEC.
[44] Shayan Eskandari, Jeremy Clark, Vignesh Sundaresan, and Moe Adham. 2017.

On the feasibility of decentralized derivatives markets. In International Confer-
ence on Financial Cryptography and Data Security. Springer, 553–567.

[45] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2019. Sok: Trans-
parent dishonesty: front-running attacks on blockchain. In International Confer-
ence on Financial Cryptography and Data Security. Springer, 170–189.

[46] Ethereum. 2015. Official Go implementation of the Ethereum protocol.
[47] Etheroll. 2020. Ethereum casino. URl: https://etheroll.com/ (2020).
[48] Aykut Firat, Stuart Madnick, and Benjamin Grosof. 2002. Knowledge integration

to overcome ontological heterogeneity: Challenges from financial information
systems. (2002).

[49] Flashbots. 2021. Flashbots. URl: https://github.com/flashbots/pm (2021).
[50] Bryan Ford and Rainer Böhme. 2019. Rationality is Self-Defeating in Permis-

sionless Systems. arXiv:1910.08820 [cs.CR]
[51] MakerDAO Forum. 2020. Scientific Governance and Risk #120. URl:

https://forum.makerdao.com/t/agenda-discussion-scientific-governance-and-risk-
120-thursday-december-3-16-00-utc/5357 (2020).

[52] Sharon Goldberg, Dimitrios Papadopoulos, and Jan Včelák. 2017. Verifiable Ran-
dom Functions (VRFs). Internet-Draft draft-goldbe-vrf-01. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-goldbe-vrf-01 Work in
Progress.

[53] Vincent Gramoli. 2020. From blockchain consensus back to Byzantine consensus.
Future Generation Computer Systems 107 (2020), 760–769.

[54] Wanyun Catherine Gu, Anika Raghuvanshi, and Dan Boneh. 2020. Empirical
Measurements on Pricing Oracles and Decentralized Governance for Stablecoins.
Available at SSRN 3611231 (2020).

[55] Farshad Hakimpour and Andreas Geppert. 2001. Resolving semantic hetero-
geneity in schema integration. In Proceedings of the international conference on
Formal Ontology in Information Systems-Volume 2001. 297–308.

[56] Robin Hanson. 2003. Combinatorial information market design. Information
Systems Frontiers 5, 1 (2003), 107–119.

[57] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse
attacks on bitcoin’s peer-to-peer network. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 129–144.

[58] Sebastian Henningsen, Daniel Teunis, Martin Florian, and Björn Scheuermann.
2019. Eclipsing ethereum peers with false friends. In 2019 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW). IEEE, 300–309.

[59] C. Herley and P. C. Van Oorschot. 2017. SoK: Science, Security and the Elusive
Goal of Security as a Scientific Pursuit. In 2017 IEEE Symposium on Security and
Privacy (SP). 99–120. https://doi.org/10.1109/SP.2017.38

[60] Eyal Hertzog, Guy Benartzi, and Galiar Benartzi. 2017. Bancor protocol: contin-
uous liquidity for cryptographic tokens through their smart contracts. White
paper (2017).

[61] Huobi DeFiLabs Insight. 2020. Price Oracle - A Must Have Infrastructure. URl:
https://www.huobidefilabs.io/en/Insight/1313163603254243330/ (2020).

[62] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and
Edward W. Felten. 2018. Arbitrum: Scalable, private smart contracts. In USENIX
Security.

[63] Dmitry Khovratovich and Jason Law. 2017. Sovrin: digital identities in the
blockchain era. Technical Report. Sovrin.

[64] Joshua A Kroll, Ian C Davey, and Edward W Felten. 2013. The economics of
Bitcoin mining, or Bitcoin in the presence of adversaries. In Proceedings of WEIS,
Vol. 2013. 11.

[65] Hart Lambur, Allison Lu, and Regina Cai. 2019. Uma data verificationmechanism:
Adding economic guarantees to blockchain oracles. Risk Labs, Inc., Tech. Rep.,
Jul (2019).

[66] Langner. 2020. The Stuxnet Story. URl: https://www.langner.com/2020/07/the-
stuxnet-story/ (2020).

[67] Ralph Langner. 2011. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
& Privacy 9, 3 (2011), 49–51.

[68] Clement Lesaege, Federico Ast, and William George. 2019. Kleros
The Justice Protocol. URl: https://kleros.io/static/whitepaper_en-
8bd3a0480b45c39899787e17049ded26.pdf (2019).

[69] Iuon-Chang Lin and Tzu-Chun Liao. 2017. A survey of blockchain security
issues and challenges. IJ Network Security 19, 5 (2017), 653–659.

[70] Bowen Liu and Pawel Szalachowski. 2020. A First Look into DeFi Oracles. arXiv
preprint arXiv:2005.04377 (2020).

[71] Sin Kuang Lo, Xiwei Xu, Mark Staples, and Lina Yao. 2020. Reliability analysis
for blockchain oracles. Computers & Electrical Engineering 83 (2020), 106582.

[72] LongForWisdom. 2020. Flash Loans and securing the Maker Protocol.
URl: https://forum.makerdao.com/t/urgent-flash-loans-and-securing-the-maker-
protocol/4901 (2020).

[73] Stuart Madnick and Hongwei Zhu. 2006. Improving data quality through
effective use of data semantics. Data & Knowledge Engineering 59, 2 (2006),
460–475.

[74] MakerDAO. 2019. Introducing Oracles V2 and DeFi Feeds.
[75] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander

Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller.
2021. Candid: can-do decentralized identity with legacy compatibility, sybil-
resistance, and accountability. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1348–1366.

[76] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random functions.
In 40th annual symposium on foundations of computer science (cat. No. 99CB37039).
IEEE, 120–130.

[77] Amani Moin, Kevin Sekniqi, and Emin Gun Sirer. 2020. SoK: A Classification
Framework for Stablecoin Designs. In Financial Cryptography.

[78] Saikat Mondal, Kanishka P Wijewardena, Saranraj Karuppuswami, Nitya Kriti,
Deepak Kumar, and Premjeet Chahal. 2019. Blockchain inspired RFID-based
information architecture for food supply chain. IEEE Internet of Things Journal
6, 3 (2019), 5803–5813.

[79] Andreas Müller and Marcel Grandi. 2000. Weather derivatives: a risk man-
agement tool for weather-sensitive industries. The Geneva Papers on Risk and
Insurance. Issues and Practice 25, 2 (2000), 273–287.

[80] Nexus Mutual. 2020. Responsible Vulnerability Disclosure. URl:
https://medium.com/nexus-mutual/responsible-vulnerability-disclosure-
ece3fe3bcefa (2020).

[81] NEST. 2020. NEST Protocol: A Distributed Price Oracle Network. URl:
https://nestprotocol.org/doc/ennestwhitepaper.pdf (2020).

[82] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. 2015. A simulation
model for analysis of attacks on the bitcoin peer-to-peer network. In 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM).
IEEE, 1327–1332.

[83] Till Neudecker and Hannes Hartenstein. 2019. Short paper: An empirical anal-
ysis of blockchain forks in bitcoin. In International Conference on Financial
Cryptography and Data Security. Springer, 84–92.

[84] ChainLink Oracle. 2021. Explicit Staking in Chainlink 2.0: An Overview. URl:
https://blog.chain.link/explicit-staking-in-chainlink-2-0/ (2021).

[85] PeckShield. 2020. bZx Hack II Full Disclosure (With Detailed Profit Analysis).
[86] Ingolf G A Pernice, Sebastian Henningsen, Roman Proskalovich, Martin Florian,

and Hermann Elendner. 2019. Monetary Stabilization in Cryptocurrencies:
Design Approaches and Open Questions. In CVCBT.

[87] Jack Peterson and Joseph Krug. 2015. Augur: a decentralized, open-source
platform for prediction markets. arXiv preprint arXiv: 1501.01042 (2015).

[88] PoolTogether. 2020. PoolTogether is a no-loss, audited savings game powered
by blockchain technology. URl: https://www.pooltogether.com/ (2020).

[89] Band Protocol. 2020. BandChain Whitepaper. URl:
https://docs.bandchain.org/whitepaper/system-overview.html (2020).

[90] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2020. Attack-
ing the DeFi Ecosystem with Flash Loans for Fun and Profit. arXiv preprint
arXiv:2003.03810 (2020).

[91] Haseeb Qureshi. 2020. Introducing CoFiX: a Next-Generation AMM.
URl: https://medium.com/dragonfly-research/introducing-cofix-a-next-generation-
amm-199aea686b6b (2020).

[92] Scott Ruoti, Ben Kaiser, Arkady Yerukhimovich, Jeremy Clark, and Robert
Cunningham. 2020. Blockchain Technology: What is It Good For? Commun.
ACM 63, 1 (2020), 46–53.

[93] Mehdi Salehi, Jeremy Clark, and Mohammad Mannan. 2021. Red-Black Coins:
Dai without liquidations. In Financial Cryptography: DeFi.

[94] Suzan Sallam and Babak D Beheshti. 2018. A survey on lightweight crypto-
graphic algorithms. In TENCON 2018-2018 IEEE Region 10 Conference. IEEE,
1784–1789.

[95] Andrey Shevchenko. 2020. Uniswap and automated market makers, ex-
plained. URl: https://cointelegraph.com/explained/uniswap-and-automated-
market-makers-explained (2020).

[96] Krushang Sonar and Hardik Upadhyay. 2014. A survey: DDOS attack on Internet
of Things. International Journal of Engineering Research and Development 10, 11
(2014), 58–63.

140

https://arxiv.org/abs/1910.08820
https://datatracker.ietf.org/doc/html/draft-goldbe-vrf-01
https://doi.org/10.1109/SP.2017.38

SoK: Oracles from the Ground Truth to Market Manipulation AFT ’21, September 26–28, 2021, Arlington, VA, USA

[97] Synthetix. 2019. Synthetix Response to Oracle Incident. URl:
https://blog.synthetix.io/response-to-oracle-incident/ (2019).

[98] Synthetix. 2020. A derivatives liquidity protocol. URl: https://www.synthetix.io/
(2020).

[99] Paul Sztorc. 2015. Truthcoin. peer-to-peer oracle system and prediction market-
place. (2015).

[100] Tellor. [n.d.]. A decentralized Oracle. https://tellor.io/storage/TellorWhitepaper.
pdf

[101] Tellor-io. 2020. EIP-2362: Pull Oracle Interface. URl: https://github.com/tellor-
io/EIP-2362 (2020).

[102] Feng Tian. 2016. An agri-food supply chain traceability system for China based
on RFID & blockchain technology. In 2016 13th international conference on service
systems and service management (ICSSSM). IEEE, 1–6.

[103] TLSnotary. 2014. A mechanism for independently audited https sessions. URl:
https://tlsnotary.org/TLSNotary.pdf (2014).

[104] UMA. 2020. UMA Data Verification Mechanism: Adding
Economic Guarantees to Blockchain Oracles. URl:
https://github.com/UMAprotocol/whitepaper/blob/master/UMA-DVM-oracle-
whitepaper.pdf (2020).

[105] Uniswap. 2020. Uniswap Oracle. URl: https://uniswap.org/docs/v2/core-
concepts/oracles (2020).

[106] Marie Vasek, Micah Thornton, and Tyler Moore. 2014. Empirical analysis of
denial-of-service attacks in the Bitcoin ecosystem. In International conference
on financial cryptography and data security. Springer, 57–71.

[107] Yongge Wang. 2020. Automated Market Makers for Decentralized Finance
(DeFi). arXiv preprint arXiv:2009.01676 (2020).

[108] whiterabbit. 2020. Black Thursday for MakerDAO: $8.32 million was liquidated
for 0 DAI.

[109] Austin K Williams and Jack Peterson. 2019. Decentralized Common Knowledge
Oracles. arXiv preprint arXiv:1912.01215 (2019).

[110] Anthony D Wood and John A Stankovic. 2002. Denial of service in sensor
networks. computer 35, 10 (2002), 54–62.

[111] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[112] Michael F. Worboys and S. Misbah Deen. 1991. Semantic heterogeneity in
distributed geographic databases. ACM Sigmod Record 20, 4 (1991), 30–34.

[113] Zaugust. 2020. CoFiX: A Computable Trading System. URl:
https://cofix.io/doc/Trading_Compensation_CoFiX.pdf (2020).

[114] Pamela J Zelbst, KennethW Green, Victor E Sower, and Philip L Bond. 2019. The
impact of RFID, IIoT, and Blockchain technologies on supply chain transparency.
Journal of Manufacturing Technology Management (2019).

[115] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
crier: An authenticated data feed for smart contracts. In Proceedings of the
2016 aCM sIGSAC conference on computer and communications security. ACM,
270–282.

[116] Fan Zhang, Sai Krishna Deepak Maram, Harjasleen Malvai, Steven Goldfeder,
and Ari Juels. 2019. DECO: Liberating Web Data Using Decentralized Oracles
for TLS. arXiv preprint arXiv:1909.00938 (2019).

[117] Shijie Zhang and Jong-Hyouk Lee. 2019. Double-spending with a Sybil attack in
the Bitcoin decentralized network. IEEE Transactions on Industrial Informatics
15, 10 (2019), 5715–5722.

141

https://tellor.io/storage/TellorWhitepaper.pdf
https://tellor.io/storage/TellorWhitepaper.pdf

	22b22453-8551-43e7-aa32-f3e493dd9b91.pdf
	Project background information
	Activities performed
	Transparency statement on overlapping funding
	Financial statement

	d8094210-46fd-4340-83e5-f7d1c0453a56.pdf
	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Modular Work Flow
	4.1 Ground Truth
	4.2 Data Sources
	4.3 Data Feeders
	4.4 Selection of Data Feeders
	4.5 Aggregation of Data Feeds
	4.6 Dispute Phase
	4.7 Classification of Current Oracle Projects

	5 Interacting with the blockchain
	5.1 Off-chain Infrastructure
	5.2 Blockchain Infrastructure
	5.3 Smart Contracts

	6 Concluding Remarks
	Acknowledgments
	References

