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Abstract

Using data from Centralized Exchanges (CEXs) and Decentralized Exchanges (DEXs), we

examine the interaction of cryptocurrencies trading between CEXs and DEXs. Specifi-

cally, we apply a Gaussian Process (GP) model to describe the CEX time series of prices

and volumes. For every time point within the DEX dataset, we ascertain the discrepancy

between the expected posterior of the DEX time point—considering CEX data as the

prior—and the actual DEX price at that specific time point. By systematically advancing

the DEX dataset and continuously calculating the average error for each day, we deter-

mine the Optimal Time Lag between DEX and CEX asset prices daily. This approach

yields a quantitative assessment of the most likely delay between DEX and CEX asset

prices. Based on the Optimal Time Lag measure, we observe that the asset prices and

volumes of all DEXs follow the CEXs, yet they exhibit distinct evolutionary trends on

BTC.USDT trading price over the last two years. For some DEXs, the evolution of time

lag demonstrates a pattern similar to that of the time lag in trading volume (e.g. the

intensity of trading activity).

Keywords: Decentralized exchange; Centralized exchange; Liquidity; Arbitrage; Decen-

tralized Market Makers

JEL Classification: D4, D53, G14



1 Introduction

The financial market, since its inception, has had two fundamental functions: price dis-

covery and liquidity provision. Price discovery is a dynamic process in which market price

adjusts to the arrivals of new information and converges to the fundamental value of the

assets (Schreiber and Schwartz (1986), Baillie et al. (2002), and Lehmann (2002)), whereas

liquidity provision aims at facilitating a better allocation of financial resources. To orga-

nize cryptocurrency trading, almost all of the world’s major exchanges have adopted either

a centralized Limit Order Book, which is widely used for traditional financial assets trad-

ing (e.g., equity), or a decentralized Blockchain-based automated market maker (AMM).

It should be noted that each type of market has its advantages and challenges, and the

choice between them often depends on user preferences, trading strategies, and regulatory

considerations.

Compared to a traditional quote-driven market where the designated market makers pro-

vide liquidity to the whole market at the same quoted price, the order-driven market has

dramatically changed how liquidity is provided and how the price is formed. One essen-

tial feature of an order-driven market is that there are no designated market makers and

traders trade between themselves (Jain (2005)). Apart from market orders, any market

participant could play a market maker role by submitting limit orders (i.e. orders stand-

ing in the LOB with quoted buying and selling prices that are different from the best

available price on the market). Accordingly, in a purely automatic order-driven market,

market activity becomes very transparent and it is divided into limit-order-related quoting

activity and market-order-related trading activity. Liquidity is visible and fully offered by

the open LOB, and price formation process is the outcome of a complex trading process

between market orders and limit orders.

Alternatively, with blockchain technology, traders can also trade under decentralized pro-

tocols without relying on a central authority. Specifically, in markets organized by a decen-

tralized Blockchain-based automated market maker, liquidity providers deposit funds into

liquidity pools, traders interact with these pools by swapping assets at prices determined
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by the smart contract and the prices are determined algorithmically based on the ratio

of assets in the pool. Smart contracts execute trades autonomously in DeFi and liquidity

in DeFi is provided by users who deposit funds into liquidity pools. Today, more than

700 million USD transactions have been settled through the leading AMM-based decen-

tralized exchanges (DEXs) and the traded instruments in overall DEXs have ranged from

fungible crypto tokens to tokenized equity shares (Lehar and Parlour (2024)). Despite

of DEXs’ growing importance, there is few formal analysis of the DEXs’ role in overall

cryptocurrency price discovery and liquidity provision. To bridge this gap, our study at-

tempts to enhance the understanding of DEXs for market participants by comparing the

price formation mechanism in DEXs with that in centralized exchanges (CEXs). Further,

we seek to identify the presence of arbitrage opportunities between CEXs and DEXs and

their implications on liquidity. Finally, our study investigates the lead-lag relationship of

price and trading volume between DEXs and CEXs.

Our research project provides a detailed comparison between CEXs and DEXs, which

raise the awareness of market participants and enable them to make rational choices. We

show that the DeFi market trading volume increases over time and represents less than

10% CeFi market trading volume. Given that DeFi systems inherently operate as closed

systems,1 trading activities in DeFi follow those in CeFi where public information can

be instantaneously incorporated into price. Our results suggest that the delay in DeFi

price relative to CeFi price becomes smaller over time. This finding implies that the

connectedness between CeFi and DeFi increases over time.

Our findings help policymakers to reflect on the regulatory rules and policies to make

the most appropriate decisions. Finally, our research project provides insights into the

possibility of including the design of DEXs in traditional financial instrument trading.

1The DeFi rules that govern the smart contracts are predefined and written into the code,
creating a closed and deterministic system. Even though DeFi relies on Oracles to interact with
the external, non-blockchain world, enabling DeFi applications to respond to changing conditions
and events beyond the blockchain environment, it still remains a relatively closed system compared
to CeFi.
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The rest of the paper proceeds as follows. In Section 2, we describe the data, and in

Section 3.1, we discuss the construction of model. In Section 4, we present and discuss

results of empirical tests. Section 5 concludes.

2 Data and Market Structure

2.1 Data

To conduct our DeFi and CeFi observations based on various time intervals, we use the

intraday-level data. The intraday transaction data used in this paper are from the leading

cryptocurrency market data provider Kaiko. Its raw cryptocurrency data covers 20,000+

pairs across worldwide exchanges. Our dataset is at the tick-by-tick level, including unique

trade id, exchange codes, currency pairs, prices, volumes, trade directions, and timestamps,

for all exchanges where BTC.USDT is traded. We remove the tick-by-tick level extreme

trading volume and price for all exchanges before computing the variables. For the total

Bitcoin trading volume at the daily level for the sample period, we retrieve the data from

Coinbase.

Table 1 displays the trading volume of BTC.USDT for both DeFi and CeFi exchanges

during the sample period. It is important to note that during this period, certain exchanges

ceased operations while new ones were established. The final two columns of Table 1

indicate the commencement and conclusion dates of the respective exchanges.

[Insert Table 1 here]

Figure 1 presents the Bitcoin price and trading volume during the sample period. The price

reach the maximum of around 70,000 $ in the June 2021 and decreases to the minimum

of 20,000 $ in the January 2023. The trading volume follows a declining trend over time.

[Insert Figure 1 here]
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Figure 2 and 3 compare the trading volume of BTCUSDT in CeFi with that in DeFi. The

trading volume in DeFi increases gradually over time but is dominated by trading volume

in CeFi. In general, the DeFi trading volume represents less than 10% trading volume in

CeFi.

[Insert Figure 2 and 3 here]

2.2 Automatic Market Maker in DeFi

Automated Market Makers (AMMs) play a crucial role in decentralized finance (DeFi)

ecosystems. The AMM mechanism is a decentralized trading protocol that facilitates the

automatic exchange of assets without the need for traditional intermediaries. AMMs rely

on liquidity pools provided by liquidity provider2 for trading. Each pool consists of pairs

of tokens. liquidity provider can contribute to these pools by depositing an equivalent

value of both tokens. The most common AMM model is based on a mathematical formula

known as the constant product formula. Uniswap, one of the pioneering AMMs, utilizes

this formula. It ensures that the product of the quantities of two tokens in a liquidity

pool remains constant. The formula is typically expressed as x × y = k, where x and

y represent the quantities of the two tokens, and k is a constant. One issue about the

constant product is that the formula implies that as one token is bought from the pool,

the quantity of the other token in the pool adjusts automatically to maintain the product

constant. This results in an automated and algorithmic determination of the price of the

tokens based on the ratio of their quantities in the pool, which could lead to a slippage.3

In addition, liquidity provider are also exposed to the risk of impermanent loss, which

occurs when the price of the tokens in the liquidity pool diverges from the external market

prices. This risk is inherent in AMMs due to the automated nature of price adjustments.

2AMMs often introduce a fee mechanism to reward liquidity providers. When users trade within
the liquidity pool, a small fee is charged, and a portion of this fee is distributed among liquidity
providers, incentivizing them to contribute assets to the pool.

3Traders can execute trades by swapping one token for another directly through the AMM.
The smart contract calculates the slippage, which is the difference between the expected price and
the execution price, based on the changing pool ratios.
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Overall, the AMM mechanism (e.g., Uniswap, SushiSwap, and Balancer) in DeFi provides

a decentralized and automated way for users to trade digital assets while offering liquidity

providers an opportunity to earn fees by contributing to liquidity pools. However, due to

the nature of closed systems, DeFi exchanges are led by CeFi exchanges.

3 Methodology

3.1 A Quantitative Analysis of the Time Lag in Bitcoin Price Response

To effectively model the dynamics of the BTC-USDT exchange, we employed a Gaussian

Process (GP) model. This choice was motivated by the GP’s versatility and robustness in

time series modelling. As a non-parametric approach, the GP does not assume a specific

functional form for the underlying data generation process. This flexibility allows them to

adapt to a wide range of patterns in the data, from linear trends to complex and non-linear

behaviors. They also allow probabilistic forecasts, in environments like financial markets,

where risk management is important, the ability to estimate not just future values but

also their associated uncertainties is invaluable. This makes GP particularly suited for

understanding and predicting the behaviour of cryptocurrency markets.

A GP is fully specified by its mean function m(·) and covariance function k(·,·). The mean

function represents the average trend of the time series, and the covariance function, also

known as the kernel, defines how the values of the time series are correlated with each other

over time. In our experiment, we adopt a Rational Quadratic Kernel function, defined as

follows:

k(xi,xj) = (1 +
d(xi,xj)

2

2al2
), (1)

in which a and l represent the scale mixture and scale length parameters, respectively,

d(·,·) represents an Euclidean distance function. Given a set of time series data indexed

by an index i: D = {xi}, i ∈ T, a GP assumes the data are generated from an underlying
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multi-dimenional Gaussian distribution:
x1
...

xm

 ∼ N(0,


K(1,1),...,K(1,n)

...

K(n,1),...,K(n,n))

) = N(0,K(T,T)). (2)

In analyzing the time series datase X ∈ pow(D), each element xi ∈ X is indexed by i ∈ T,

The posterior distribution of any random variable xt can be deduced as follows:

P (xt|X) ∼ N(K(t,T)TK(T,T)−1X,K(t,t) +K(t,T)TK(T,T)−1K(t,T)), (3)

using posterior inference from Gaussian Processes, for two sets of time series data DA, DB

from two different exchanges A and B. The GP reconstruction loss L(DA, DB) between

these two different exchanges can be calculated as follows:

L(DA, DB) =

∑
xi∈DB

|E(P (xi|DA))− xi|
|DB|

. (4)

Considering the inter-data set loss L, when the price of exchange B follows exchange A,

to quantitatively assess the time lag between exchanges A and B, we define the optimal

time lag to by minimizing the inter-dataset loss L:

to = argmintL(DA, D
+t
B ), (5)

where D+t
B represents a modified version of dataset DB with the index of each time series

data point xi have been shifted forwardly t time steps, leading to xi+t. An example of the

GP reconstruction loss evolution with different time lags is given in Figure 4, where the

global minimum to = 7.

[Insert Figure 4 here]
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The proposed Optimal time lag can be seen as a measure indicating the most probable

delay between two sets of time series data. In this report, we studied the optimal time

lag on BTC-USDT price between different pairs of DEXs and CEXs, results demonstrate

that, generally, DEX prices follow CEX prices, but the amount of time lag varies among

different DEXs.

4 Empirical Results

As shown in Figure 5, DEX exchange Curve V2 maintains the low price time leg compared

to Binance price among all the five DEXs. Notably, Uniswap V3 has achieved a similar

level of price immediacy, particularly after 2022.

As can be seen from the mean values over fixed-length intervals shown as red lines in

Figure 5. The trend in the evolution of the price time lag across various DEXs exhibits

three distinct patterns. Specifically, the price time leg between Binance and both Curve

V2 and Uniswap V2 remains constant throughout the valid period. Conversely, Sushiswap

and Uniswap V3 exhibit a decreasing trend in time lag. Meanwhile, OneInch stands out

from the other DEXs by showing an increasing time lag in the BTC-USDT price.

[Insert Figure 5 here]

The varying patterns in the price time lag could be attributed to several factors, including

the design of the smart contract, trading volume, and the payoff mechanism for liquidity

providers. We will investigate the detailed impact of these factors on the price time leg in

the next step of our work.

Further analysis on the optimal time lag trading volume, as shown in Figure 6, indicates

that for the DEXs demonstrating a significant evolutionary trend in BTC.USDT price

time lag, their trading volumes exhibit similar behaviour. Specifically, OneInch shows an

increasing time lag in both price and trading volume, while Sushiswap displays a decreas-

ing trend in both price and volume. From this, we can conclude that the intensity of
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trading volume is an important factor in determining the price time lag between DEXs

and Centralized Exchanges (CEX). Due to the limitations in data availability, we did not

present an analysis on Uniswap DEX trading volume. This aspect will be included in our

further work.

5 Conclusion

Using data from Centralized Exchanges (CEXs) and Decentralized Exchanges (DEXs),

this study examines the interaction of cryptocurrencies trading between CEXs and DEXs.

To do so, we developed a new methodology for the quantitative analysis of time delay

phenomena in BTC.USDT trading price and volume. Utilizing CEX time series data on

asset prices and volumes, we employ a GP model to characterize the data. For each time

point in the DEX dataset, we determine the discrepancy between the expected posterior

of the DEX time point (based on CEX data as the prior), and the actual DEX price at

that time. By incrementally advancing the DEX dataset and calculating the average error

daily, we establish the Optimal Time Lag between DEX and CEX asset prices.

Our findings reveal that while asset prices and volumes of all DEXs tend to follow those of

the CEXs, they demonstrate unique evolutionary trends in BTC.USDT trading price over

the previous two years. Notably, exchanges such as OneInch and Sushiswap show that the

evolution of time lag mimics the pattern observed in trading volume. This suggests that

the intensity of trading activity on DEXs is a crucial factor affecting the price time lag

following CEX prices. Further research is necessary to elucidate the intricate mechanisms

driving these distinct evolutionary trends.
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Table 1: Distribution of BTC.USDT Traded Volume Among CeFi and DeFi Exchanges

Panel A

CeFi Exchange Volume Start Date End Date

Allcoin 6.72 20210101 20210411

BTC-Alpha 607,463.01 20210101 20220801

BeQuant 4,486,013.37 20210101 20231010

Bibox 1,840,451.60 20210101 20221224

BigONE 5,270,384.78 20210101 20231010

BinanceUS 971,195.69 20210101 20231010

Binance V2 5,026,768.75 20210101 20231010

Bit-Z 942,591.47 20210101 20211021

BitBay 18,561.96 20210101 20220214

BitForex 4,800,777.39 20210101 20231010

BitMEX 24,236.53 20220517 20231010

Bitfinex 957,076.64 20210101 20231010

Bitpanda 2,789.20 20230120 20231010

Bitstamp 28,952.46 20210615 20231010

Bittrex 176,061.47 20210101 20231010

Bybit V2 3,993,704.95 20210617 20231010

Bybit spot 1,936,958.76 20220922 20231010

Bybit staging 98,719.96 20221017 20221121

CEX.IO 10,879.23 20210101 20231010

CRCO 4,226,746.34 20210101 20231010

CoinEgg 32,379.85 20210101 20210417

CoinEx 487,626.09 20210101 20231010

Coinbase 806,499.22 20210504 20231010

Currency.com 956.99 20210101 20231010

Delta Exchange 41,255.55 20230625 20230731

EXX 427,680.04 20210101 20211022

FTX 1,794,413.15 20210101 20221112
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Table 1 continued from previous page

Panel A

FTX US 135,439.35 20211117 20221111

Gemini 308.83 20230110 20231010

HitBTC 919,531.19 20230101 20231010

Huobi 6,831,197.80 20210101 20231010

Kraken 407,007.76 20210101 20231010

KuCoin 5,993,830.76 20210101 20231010

OSL 13,562.07 20210921 20231010

OkCoin 8,964.53 20210101 20221208

OkEX 6,378,922.73 20210101 20231010

Poloniex 881,896.80 20210101 20231010

Quoine 18,053.29 20210101 20221120

TheRockTrading 417.64 20210603 20230217

Tidex 14,382.14 20210101 20220310

UPbit 11,310.65 20210101 20231010

ZB 4,379,022.15 20210101 20220904

Mexc 229,487.39 20230616 20231010

Panel B

CeFi Exchange Volume Start Date End Date

Balancer V2 0.01 20221110 20230409

Curve V2 176,750.50 20220601 20231010

OneInch 74,711.70 20211001 20230623

Sushiswap 1.60 20210612 20231010

Uniswap V2 131.48 20210101 20231010

Uniswap V3 31,126.99 20210505 20231010
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